Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-511-2025
https://doi.org/10.5194/angeo-43-511-2025
Regular paper
 | 
16 Sep 2025
Regular paper |  | 16 Sep 2025

Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere

Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand

Related authors

Occurrence of tornado outbreaks influenced by solar wind–magnetosphere–ionosphere–atmosphere coupling
Paul Prikryl and Vojto Rušin
Adv. Sci. Res., 22, 19–38, https://doi.org/10.5194/asr-22-19-2025,https://doi.org/10.5194/asr-22-19-2025, 2025
Short summary
Mesoscale weather influenced by auroral gravity waves contributing to conditional symmetric instability release?
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024,https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022,https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021,https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary

Cited articles

Afraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Pala martchouk, K. S., Perevalova, N. P., and Pirog, O. M.: Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays, J. Atmos. Sol.-Terr. Phy., 62, 553–565, https://doi.org/10.1016/S1364-6826(00)00011-0, 2000. 
Agenzia Spatiale Italiana: GNSS data, Agenzia Spatiale Italiana [data set], http://geodaf.mt.asi.it/index.html, last access: 11 July 2025. 
Alexander, M. J.: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere, J. Geophys. Res.-Atmos., 101, 1571–1588. https://doi.org/10.1029/95JD02046, 1996. 
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems, Earth Planets Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. 
Amm, O., Engebretson, M. J., Hughes, T., Newitt, L., Viljanen, A., and Watermann, J.: A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of field-aligned currents, and the role of induced currents, J. Geophys. Res., 107, 1334, https://doi.org/10.1029/2002JA009472, 2002. 
Download
Short summary
Traveling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of traveling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at midlatitudes.
Share