Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-511-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-511-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere
Physics Department, University of New Brunswick, Fredericton, NB, Canada
David R. Themens
Physics Department, University of New Brunswick, Fredericton, NB, Canada
School of Engineering, University of Birmingham, Birmingham, UK
Jaroslav Chum
Institute of Atmospheric Physics CAS, Prague, Czech Republic
Shibaji Chakraborty
Space and Atmospheric Instrumentation Lab, Center for Space and Atmospheric Research, Daytona Beach, FL, USA
Robert G. Gillies
Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
James M. Weygand
Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
Related authors
Paul Prikryl and Vojto Rušin
Adv. Sci. Res., 22, 19–38, https://doi.org/10.5194/asr-22-19-2025, https://doi.org/10.5194/asr-22-19-2025, 2025
Short summary
Short summary
A link between the solar wind and the occurrence of large tornado outbreaks is found. The solar wind coupling to the Earth’s magnetic field deposits energy into the upper atmosphere at high latitudes. We consider the role of aurorally generated atmospheric gravity waves in the release of instabilities contributing to development of synoptic-scale weather conditions favoring formation of supercells in a strong wind shear environment and high tornado occurrence.
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Paul Prikryl and Vojto Rušin
Adv. Sci. Res., 22, 19–38, https://doi.org/10.5194/asr-22-19-2025, https://doi.org/10.5194/asr-22-19-2025, 2025
Short summary
Short summary
A link between the solar wind and the occurrence of large tornado outbreaks is found. The solar wind coupling to the Earth’s magnetic field deposits energy into the upper atmosphere at high latitudes. We consider the role of aurorally generated atmospheric gravity waves in the release of instabilities contributing to development of synoptic-scale weather conditions favoring formation of supercells in a strong wind shear environment and high tornado occurrence.
Michal Kozubek, Lisa Kuchelbacher, Jaroslav Chum, Tereza Sindelarova, Franziska Trinkl, and Katerina Podolska
Atmos. Meas. Tech., 18, 1373–1388, https://doi.org/10.5194/amt-18-1373-2025, https://doi.org/10.5194/amt-18-1373-2025, 2025
Short summary
Short summary
Waves are important as main drivers of different stratispheric patterns (streamers). We analyse changes in waves and infrasound characteristics related to streamers using continuous Doppler soundings and arrays of microbarometers in Czechia. Ground measurements using infrasound arrays showed that gravity wave propagation azimuths were more random during streamers than during calm conditions. Measurements in the ionosphere during streamers did not differ from those expected for the given time.
Jaroslav Chum, Ronald Langer, Ivana Kolmašová, Ondřej Lhotka, Jan Rusz, and Igor Strhárský
Atmos. Chem. Phys., 24, 9119–9130, https://doi.org/10.5194/acp-24-9119-2024, https://doi.org/10.5194/acp-24-9119-2024, 2024
Short summary
Short summary
Lightning and extreme weather can endanger people and technology. Despite advances in science, not all the factors that lead to the formation of thunderclouds, to their charging and to lightning ignition are known in detail. This paper shows that lightning frequency may, to some extent, be modulated by solar activity and solar wind. Namely, in the region of the South Atlantic Anomaly of the Earth's magnetic field, it correlates with the polarity and intensity of the solar wind.
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-18, https://doi.org/10.5194/gi-2023-18, 2024
Preprint under review for GI
Short summary
Short summary
We present a second-level calibration method for electron density measurements from multi-beam incoherent scatter radars. It is based on the well-known Flat field correction method used in imaging and photography. The methods improve data quality and useability as they account for unaccounted, and unpredictable variations in the radar system. This is valuable for studies where inter-beam calibration is important such as studies of polar cap patches, plasma irregularities and turbulence.
Kristina Collins, John Gibbons, Nathaniel Frissell, Aidan Montare, David Kazdan, Darren Kalmbach, David Swartz, Robert Benedict, Veronica Romanek, Rachel Boedicker, William Liles, William Engelke, David G. McGaw, James Farmer, Gary Mikitin, Joseph Hobart, George Kavanagh, and Shibaji Chakraborty
Earth Syst. Sci. Data, 15, 1403–1418, https://doi.org/10.5194/essd-15-1403-2023, https://doi.org/10.5194/essd-15-1403-2023, 2023
Short summary
Short summary
This paper summarizes radio data collected by citizen scientists, which can be used to analyze the charged part of Earth's upper atmosphere. The data are collected from several independent stations. We show ways to look at the data from one station or multiple stations over different periods of time and how it can be combined with data from other sources as well. The code provided to make these visualizations will still work if some data are missing or when more data are added in the future.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Cited articles
Afraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Pala martchouk, K. S., Perevalova, N. P., and Pirog, O. M.: Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays, J. Atmos. Sol.-Terr. Phy., 62, 553–565, https://doi.org/10.1016/S1364-6826(00)00011-0, 2000.
Agenzia Spatiale Italiana: GNSS data, Agenzia Spatiale Italiana [data set], http://geodaf.mt.asi.it/index.html, last access: 11 July 2025.
Alexander, M. J.: A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects on the middle atmosphere, J. Geophys. Res.-Atmos., 101, 1571–1588. https://doi.org/10.1029/95JD02046, 1996.
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary currents systems, Earth Planets Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999.
Amm, O., Engebretson, M. J., Hughes, T., Newitt, L., Viljanen, A., and Watermann, J.: A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of field-aligned currents, and the role of induced currents, J. Geophys. Res., 107, 1334, https://doi.org/10.1029/2002JA009472, 2002.
Australian Space Weather Services: GNSS data, Australian Space Weather Services [data set], https://downloads.sws.bom.gov.au/wdc/gnss/data/, last access: 15 July 2025.
Azeem, I.: Asymmetry of near-noncentric traveling ionospheric disturbances due to Doppler-shifted atmospheric gravity waves, Frontiers in Astronomy and Space Sciences, 8, https://doi.org/10.3389/fspas.2021.690480, 2021.
Azeem, I. and Barlage, M.: Atmosphere-ionosphere coupling from convectively generated gravity waves, Adv. Space Res., 61, 1931–1941, https://doi.org/10.1016/j.asr.2017.09.029, 2018.
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka III, W. C., and Crowley, G.: Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere, Geophys. Res. Lett., 42, 7874–7880, https://doi.org/10.1002/2015GL065903, 2015.
Azeem, I., Walterscheid, R. L., and Crowley, G: Investigation of acoustic waves in the ionosphere generated by a deep convection system using distributed networks of GPS receivers and numerical modeling, Geophys. Res. Lett., 45, 8014–8021, https://doi.org/10.1029/2018GL07810, 2018.
Balthazor, R. L. and Moffett, R. J.: A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes, Ann. Geophys., 15, 1048–1056, https://doi.org/10.1007/s00585-997-1048-4, 1997.
Becker, E., Goncharenko, L., Harvey, V. L., and Vadas, S. L.: Multi-step vertical coupling during the January 2017 sudden stratospheric warming, J. Geophys. Res.-Space Phys., 127, e2022JA030866, https://doi.org/10.1029/2022JA030866, 2022a.
Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., and Hoffmann, L.: A High-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and stratosphere. J. Geophys. Res.-Atmos., 127, e2021JD035018, https://doi.org/10.1029/2021JD035018, 2022b.
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the interplanetary medium, J. Geophys. Res., 76, 3534–3563, 1971.
Bertin, F., Testud, J., and Kersley, L.: Medium scale gravity waves in the ionospheric F-region and their possible origin in weather disturbances, Planet. Space Sci., 23, 493–507, https://doi.org/10.1016/0032-0633(75)90120-8, 1975.
Bertin, F., Testud, J., Kersley, L., and Rees, P. R.: The meteorological jet stream as a source of medium scale gravity waves in the thermosphere: an experimental study, J. Atmos. Terr. Phys., 40, 1161–1183, https://doi.org/10.1016/0021-9169(78)90067-3, 1978.
Bossert, K., Paxton, L. J., Matsuo, T., Goncharenko, L., Kumari, K., and Conde, M.: Large-scale traveling atmospheric and ionospheric disturbances observed in GUVI with multi-instrument validations, Geophys. Res. Lett., 49, e2022GL099901, https://doi.org/10.1029/2022GL099901, 2022.
Bristow, W. A., Greenwald, R. A., and Samson, J. C.: Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF Radar, J. Geophys. Res.-Space Phys., 99, 319–331, https://doi.org/10.1029/93JA01470, 1994.
Cai, H. T., Yin, F., Ma, S. Y., and McCrea, I. W.: Observations of AGW/TID propagation across the polar cap: a case study, Ann. Geophys., 29, 1355–1363, https://doi.org/10.5194/angeo-29-1355-2011, 2011.
Can-Net: GNSS data, Can-Net [data set], https://www.can-net.ca/, last access: 11 July 2025.
CEDAR: Madrigal Database, CEDAR [data set], http://cedar.openmadrigal.org/, last access: 11 July 2025.
CHAIN: GNSS data, CHAIN [data set], https://chain-new.chain-project.net/index.php/data-products/data-download, last access: 11 July 2025.
Cheng, P.-H., Lin, C., Otsuka, Y., Liu, H., Rajesh, P. K., Chen, C.-H., Lin, J.-T., and Chang, M. T.: Statistical study of medium-scale traveling ionospheric disturbances in low-latitude ionosphere using an automatic algorithm, Earth Planet. Space, 73, 105, https://doi.org/10.1186/s40623-021-01432-1, 2021.
Cherniak, I. and Zakharenkova, I.: Large-scale traveling iono spheric disturbances origin and propagation: Case study of the December 2015 geomagnetic storm, Space Weather, 16, 1377–1395, https://doi.org/10.1029/2018SW001869, 2018.
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J.-P., and Walker, A. D. M.: A decade of the super dual auroral radar network (SuperDARN): scientific achievements, new techniques and future directions, Surv. Geophys. 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007.
Chimonas, G.: The equatorial electrojet as a source of long period travelling ionospheric disturbances, Planet. Space Sci., 18, 583–589, https://doi.org/10.1016/0032-0633(70)90133-9, 1970.
Chimonas, G. and Hines, C. O.: Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 18, 565–582, https://doi.org/10.1016/0032-0633(70)90132-7, 1970.
Chum, J. and Podolská, K.: 3D analysis of GW propagation in the ionosphere, Geophys. Res. Lett., 45, 11562–11571, https://doi.org/10.1029/2018GL079695, 2018.
Chum, J., Podolská, K., Rusz, J., Baše, J., and Tedoradze, N.: Statistical investigation of gravity wave characteristics in the ionosphere, Earth Planets Space, 73, 60, https://doi.org/10.1186/s40623-021-01379-3, 2021.
Crowley, G. and Williams, P. J. S.: Observations of the source and propagation of atmospheric gravity waves, Nature, 328, 231–233, https://doi.org/10.1038/328231a0, 1988.
Delft University of Technology: GNSS data, Delft University of Technology [data set], http://gnss1.tudelft.nl/dpga/rinex, last access: 11 July 2025.
Deng, Y., Heelis, R., Lyons, L. R., Nishimura, Y., and Gabrielse, C.: Impact of flow bursts in the auroral zone on the ionosphere and thermosphere, J. Geophys. Res.-Space Phys., 124, 10459–10467, https://doi.org/10.1029/2019JA026755, 2019.
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Dungey, J. W.: Origin of the concept of reconnection and its application to the magnetopause: A historical view, Physics of the Magnetopause. Geophysical Monograph 90, edited by: Song, P., Sonnerup, B. U. O., and Thomsen, M. F., 17–19, AGU, Washington, D.C., 1995.
European Permanent GNSS Network: GNSS data [data set], https://www.epncb.oma.be/_networkdata/data_access/dailyandhourly/datacentres.php, last access: 11 July 2025.
FRDR: SuperDARN, FRDR [data set], https://www.frdr-dfdr.ca/repo/collection/superdarn, last access: 11 July 2025.
Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Gerrard, A. J., Miller, E. S., Marini, J. P., West, M. L., and Bristow, W. A.: Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar, J. Geophys. Res.-Space Phys., 119, 7679–7697, https://doi.org/10.1002/2014JA019870, 2014.
Frissell, N. A., Baker, J. B. H., Ruohoniemi, J. M., Greenwald, R. A., Gerrard, A. J., Miller, E. S., and West, M. L.: Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector, J. Geophys. Res.-Space Phys., 121, 3722–3739, https://doi.org/10.1002/2015JA022168, 2016.
GeoNet: New Zealand, GNSS data, GeoNet [data set], https://www.geonet.org.nz/data/types/geodetic, last access: 11 July 2025.
Geoscience Australia: GNSS data, Geoscience Australia [data set], http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/gnss-networks/data-and-site-logs, last access: 11 July 2025.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res.-Space Phys., 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994.
Hajkowicz, L. A.: Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances, Planet. Space Sci., 39, 1189–1196, https://doi.org/10.1016/0032-0633(91)90170-F, 1991.
Heinselman, C. J. and Nicolls, M. J.: A Bayesian approach to electric field and E-region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar, Radio Sci., 43, https://doi.org/10.1029/2007RS003805, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hines, C. O.: Internal Atmospheric Gravity Waves At Ionospheric Heights, Can. J. Phys., 38, 1441–1481, https://doi.org/10.1139/p60-150, 1960.
Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995, Ann. Geophys., 14, 917–940, https://doi.org/10.1007/s00585-996-0917-6, 1996.
Hunsucker, R. D.: Atmospheric gravity waves generated in the high-latitude ionosphere: A review, Rev. Geophys., 20, 293–315, https://doi.org/10.1029/RG020i002p00293, 1982.
IBGE: GNSS data, IBGE [data set], http://geoftp.ibge.gov.br/informacoes_sobre_posicionamento_geodesico/rbmc/dados/, last access: 11 July 2025.
IMAGE: International Monitor for Auroral Geomagnetic Effects, IMAGE [data set], https://space.fmi.fi/image/www/index.php?, last access: 11 July 2025.
Inchin, P. A., Bhatt, A., Bramberger, M., Chakraborty, S., Debchoudhury, S., and Heale, C.: Atmospheric and ionospheric responses to orographic gravity waves prior to the December 2022 cold air outbreak, J. Geophys. Res.-Space Phys., 129, e2024JA032485, https://doi.org/10.1029/2024JA032485, 2024.
INGV: Rete Integrata Nazionale GPS, GNSS data, INGV [data set], http://ring.gm.ingv.it/, last access: 11 July 2025.
Institute of Atmospheric Physics CAS: Doppler sounding of the Ionosphere archive, Institute of Atmospheric Physics CAS [data set], http://datacenter.ufa.cas.cz, last access: 11 July 2025.
ITACyL: GNSS data, ITACyL [data set], ftp://ftp.itacyl.es/RINEX/, last access: 11 July 2025.
King, J. H. and Papitashvili, N.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005.
Koch, S. E. and Dorian, P. B.: A Mesoscale Gravity Wave Event Observed during CCOPE. Part III: Wave Environment and Probable Source Mechanisms, Mon. Weather Rev., 116, 2570–2592, https://doi.org/10.1175/1520-0493(1988)116<2570:AMGWEO>2.0.CO;2, 1988.
Koch, S. E. and O'Handley, C.: Operational Forecasting and Detection of Mesoscale Gravity Waves, Weather Forecast., 12, 253–281, https://doi.org/10.1175/1520-0434(1997)012<0253:OFADOM>2.0.CO;2, 1997.
Lewis, R. V., Williams, P. J. S., Millward, G. H., and Quegan, S.: The generation and propagation of atmospheric gravity waves from activity in the auroral electrojet, J. Atmos. Terr. Phys., 58, 807–820, https://doi.org/10.1016/0021-9169(95)00075-5, 1996.
McWilliams, K. A., Yeoman, T. K., and Provan, G.: A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar, Ann. Geophys., 18, 445–453, https://doi.org/10.1007/s00585-000-0445-8, 2000.
Milan, S. E., Gosling, J. S., and Hubert, B.: Relationship between interplanetary parameters and the magnetopause reconnection rate quantified from observations of the expanding polar cap, J. Geophys. Res., 117, A03226, https://doi.org/10.1029/2011JA017082 2012.
Mrak, S., Semeter, J., Nishimura, Y., Hirsch, M., and Sivadas, N.: Coincidental TID Production by Tropospheric Weather During the August 2017 Total Solar Eclipse, Geophys. Res. Lett., 45, 10903–10911, https://doi.org/10.1029/2018GL080239, 2018.
NASA: OMNIWeb, NASA [data set], http://omniweb.gsfc.nasa.gov, last access: 11 July 2025.
NASA Earthdata: CDDIS, NASA Earthdata [data set], https://cddis.nasa.gov/archive/gnss/data/daily/, last access: 11 July 2025.
National Land Survey Finland: GNSS data, National Land Survey Finland [data set], https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/positioning-services/rinex-palvelu, last access: 11 July 2025.
National Observatory of Athens: Institute of Geodynamics, GNSS data, National Observatory of Athens [data set], https://www.gein.noa.gr/services/GPSData/, last access: 11 July 2025.
Nicolls, M. J. and Heinselman, C. J.: Three-dimensional measurements of traveling ionospheric disturbances with the Poker Flat Incoherent Scatter Radar, Geophys. Res. Lett., 34, L21104, https://doi.org/10.1029/2007GL031506, 2007.
Nishimura, Y., Zhang, S. R., Lyons, L. R., Deng, Y., Coster, A. J., Moen, J. I., Clausen, L. B., Bristow, W. A., and Nishitani, N.: Source region and propagation of dayside large-scale traveling ionospheric disturbances, Geophys. Res. Lett., 47, e2020GL089451, https://doi.org/10.1029/2020GL089451, 2020.
Nishioka, M., Tsugawa, T., Kubota, M., and Ishii, M: Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado, Geophys. Res. Lett., 40, 5581–5586, https://doi.org/10.1002/2013GL057963, 2013.
Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., Chisham, G., Hori, T., Thomas, E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., Wild, J. A., Milan, S. E., Bristow, W. A., Devlin, J., Miller, E., Greenwald, R. A., Ogawa, T., and Kikuchi, T.: Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars, Progress in Earth and Planetary Science, 6, 27, https://doi.org/10.1186/s40645-019-0270-5, 2019.
NOAA: National Geodetic Survey, https://geodesy.noaa.gov/corsdata, last access: 11 July 2025.
Norwegian Mapping Authority: Kartverket, GNSS data, Norwegian Mapping Authority [data set], https://ftp.statkart.no/, last access: 11 July 2025.
Nykiel, G., Ferreira, A., Günzkofer, F., Iochem, P., Tasnim, S., and Sato, H.: Large-Scale Traveling Ionospheric Disturbances over the European sector during the geomagnetic storm on March 23–24, 2023: Energy deposition in the source regions and the propagation characteristics. J. Geophys. Res.-Space Phys., 129, e2023JA032145, https://doi.org/10.1029/2023JA032145, 2024.
PANGA: GNSS data, PANGA [data set], http://www.geodesy.cwu.edu/pub/data/, last access: 11 July 2025.
Plougonven, R. and Teitelbaum, H.: Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes, Geophys. Res. Lett., 30, 1954, https://doi.org/10.1029/2003GL017716, 2003.
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014.
Press, W. H. and Teukolsky, S. A.: Savitzky-Golay Smoothing Filters, Comput. Phys., 4, 669–672, https://doi.org/10.1063/1.4822961, 1990.
Prikryl, P., MacDougall, J. W., Grant, I. F., Steele, D. P., Sofko, G. J., and Greenwald, R. A.: Polar patches generated by solar wind Alfvén wave coupling to the dayside magnetosphere, Adv. Space Res., 23, 1777–1780, https://doi.org/10.1016/S0273-1177(99)00390-7, 1999.
Prikryl, P., Provan, G., McWilliams, K. A., and Yeoman, T. K.: Ionospheric cusp flows pulsed by solar wind Alfvén waves, Ann. Geophys., 20, 161–174, https://doi.org/10.5194/angeo-20-161-2002, 2002.
Prikryl, P., Muldrew, D. B., Sofko, G. J., and Ruohoniemi, J. M.: Solar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves, Ann. Geophys., 23, 401–417, https://doi.org/10.5194/angeo-23-401-2005, 2005.
Prikryl, P., Gillies, R. G., Themens, D. R., Weygand, J. M., Thomas, E. G., and Chakraborty, S.: Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere, Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, 2022.
Rae, I. J., Fenrich, F. R.,Lester, M., McWilliams, K. A., and Scudder, J. D.: Solar wind modulation of cusp particle signatures and their associated ionospheric flows, J. Geophys. Res., 109, A03223, https://doi.org/10.1029/2003JA010188, 2004.
RENAG: REseau NAtional GPS permanent, RENAG [data set], http://rgp.ign.fr/DONNEES/diffusion/, last access: 11 July 2025.
Richmond, A. D.: Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131, https://doi.org/10.1029/ja083ia09p04131, 1978.
Richmond, A. D.: Large-amplitude gravity wave energy production and dissipation in the thermosphere, J. Geophys. Res.-Space Phys., 84, 1880–1890, https://doi.org/10.1029/JA084iA05p01880, 1979.
Samson, J. C., Greenwald, R. A., Ruohoniemi, J. M., and Baker, K. B.: High-frequency radar observations of atmospheric gravity waves in the high latitude ionosphere, Geophys. Res. Lett. 16, 875–878, 1989.
Samson, J. C, Greenwald, R. A., Ruohoniemi, J. M., Frey, A., and Baker, K. B.: Goose bay radar observations of earth-reflected, atmospheric gravity-waves in the high-latitude ionosphere, J. Geophys. Res., 95, 7693–7709, https://doi.org/10.1029/JA095iA06p07693, 1990.
SECS: Spherical Elementary Currents Systems, SECS [data set], https://vmo.igpp.ucla.edu/data1/SECS/, last access: 17 July 2025.
Smith, C. W., LHeureux, J., Ness, N. F., Acuña, M. H., Burlaga, L. F., and Scheifele, J.: The ACE Magnetic Fields Experiment, Space Sci. Rev., 86, 613–632, https://doi.org/10.1023/A:1005092216668, 1998.
SONEL: GNSS data, SONEL [data set], ftp://ftp.sonel.org/gps/data, last access: 11 July 2025.
SOPAC: Garner GPS archive, SOPAC [data set], http://garner.ucsd.edu/pub, last access: 11 July 2025.
SRI International: ISR Database, SRI International [data set], http://amisr.com/database/, last access: 11 July 2025.
SuperDARN Data Analysis Working Group, Thomas, E. G., Reimer, A. S., Bland, E. C., Burrell, A. G., Grocott, A., Ponomarenko, P. V., Schmidt, M. T., Shepherd, S. G., Sterne, K. T., and Walach, M.-T.: SuperDARN Radar Software Toolkit (RST) 5.0 (v5.0), Zenodo [code], https://doi.org/10.5281/zenodo.7467337, 2022.
SWEPOS: GNSS data, SWEPOS [data set], https://swepos.lantmateriet.se/, last access: 11 July 2025.
Testud, J.: Gravity waves generated during magnetic substorms, J. Atmos. Terr. Phys., 32, 1793–1805, https://doi.org/10.1016/0021-9169(70)90137-6, 1970.
Themens, D. R., Jayachandran, P. T., Langley, R. B., MacDougall, J. W., and Nicolls, M. J.: Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using ionosonde measurements, GPS Solutions, 17, 357–369, https://doi.org/10.1007/s10291-012-0284-6, 2013.
Themens, D. R., Jayachandran, P. T., and Langley, R. B.: The nature of GPS differential receiver bias variability: An examination in the polar cap region, J. Geophys. Res.-Space Phys., 120, 8155–8175, https://doi.org/10.1002/2015JA021639, 2015.
Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., and Jayachandran, P. T.: Global Propagation of Ionospheric Disturbances Associated With the 2022 Tonga Volcanic Eruption, Geophys. Res. Lett., 49, e2022GL098158, https://doi.org/10.1029/2022GL098158, 2022.
TrigNet: GNSS data, TrigNet [data set], ftp://ftp.trignet.co.za, last access: 11 July 2025.
Tsurutani, B. T. and Gonzalez, W. D.: 1987 The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405–412, https://doi.org/10.1016/0032-0633(87)90097-3, 1987.
Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., and Sugiura, M.: Interplanetary Alfvén waves and auroral (substorm) activity: Imp 8, J. Geophys. Res., 95, 2241–2252, https://doi.org/10.1029/ja095ia03p02241, 1990.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res.-Space Phys., 100, 21717–21733, https://doi.org/10.1029/95ja01476, 1995.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., and Vasyliunas, V.: Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, https://doi.org/10.1029/2005JA011273, 2006.
Uccellini, L. W. and Koch, S. E.: The Synoptic Setting and Possible Energy Sources for Mesoscale Wave Disturbances, Mon. Weather Rev., 115, 721–729, https://doi.org/10.1175/1520-0493(1987)115<0721:TSSAPE>2.0.CO;2, 1987.
UNAVCO: UNAVCO [data set], https://www.unavco.org/data/gps-gnss/gps-gnss.html, last access: 11 July 2025.
University of Alberta: CARISMA, University of Alberta [data set], https://www.carisma.ca/, last access: 11 July 2025.
Vadas, S. L. and Azeem, I.: Concentric secondary gravity waves in the thermosphere and ionosphere over the continental United States on March 25–26, 2015 from deep Convection. J. Geophys. Res.-Space Phys., 126, e2020JA028275, https://doi.org/10.1029/2020JA028275, 2021.
Vadas, S. L. and Nicolls, M. J.: Using PFISR measurements and gravity wave dissipative theory to determine the neutral thermospheric winds, Geophys. Res. Lett., 35, L02105, https://doi.org/10.1029/2007GL031522, 2008.
Vadas, S. L., Becker, E., Bossert, K., Baumgarten, G., Hoffmann, L., and Harvey, V. L.: Secondary gravity waves from the stratospheric polar vortex over ALOMAR observatory on 12–14 January 2016: Observations and modeling, J. Geophys. Res.-Atmos., 128, e2022JD036985, https://doi.org/10.1029/2022JD036985, 2023.
van de Kamp, M., Pokhotelov, D., and Kauristie, K.: TID characterised using joint effort of incoherent scatter radar and GPS, Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014, 2014.
Waldock, J. A. and Jones, T. B.: Source regions of medium scale travelling ionospheric disturbances observed at mid-latitudes, J. Atmos. Terr. Phys., 49, 105–114, https://doi.org/10.1016/0021-9169(87)90044-4, 1987.
WCDA: GNSS data, WCDA [data set], ftp://wcda.pgc.nrcan.gc.ca/pub/gpsdata/rinex, last access: 11 July 2025.
Weygand, J. M.: Spherical Elementary Currents Systems (SECS) technique North American Equivalent Ionospheric Currents (EICs) derived at 10 sec Resolution in Geographic Coordinates, University of California, Los Angeles [data set], https://doi.org/10.21978/p8d62b, 2009a.
Weygand, J. M.: Spherical Elementary Currents Systems (SECS) technique North American Spherical Elementary Current (SEC) Amplitudes derived at 10 sec Resolution in Geographic Coordinates, University of California, Los Angeles [data set], https://doi.org/10.21978/p8pp8x, 2009b.
Weygand, J. M. and Wing, S.: Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary, J. Atmos. Sol.-Terr. Phy., 143, 8–13, 2016.
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., and Mann, I.: Application and validation of the spherical elementary currents systems technique for deriving ionospheric equiv alent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, https://doi.org/10.1029/2010JA016177, 2011.
Weygand, J. M., Amm, O., Angelopoulos, V., Milan, S.E., Grocott, A., Gleisner, H., and Stolle, C.: Comparison Between SuperDARN Flow Vectors and Equivalent Ionospheric Currents from Ground Magnetometer Arrays, J. Geophys. Res., 117, A05325, https://doi.org/10.1029/2011JA017407, 2012.
Williams, P. J. S., Virdi, T. S., Lewis, R. V., Lester, M., Rodger, A. S., McCrea, I. W., and Freeman, K. S. C.: Worldwide atmospheric gravity-wave study in the European sector 1985–1990, J. Atmos. Terr. Phys., 55, 683–696, https://doi.org/10.1016/0021-9169(93)90014-P, 1993.
Yang, Y.-H., Chao, J.-K., and Lee, L.-C.: On the Walén Relation for Alfvénic Fluctuations in Interplanetary Space, Astrophys. J., 904, 195, https://doi.org/10.3847/1538-4357/abbf55, 2020.
Yu, Y., Wang, W., and Hickey, M. P.: Ionospheric signatures of gravity waves produced by the 2004 Sumatra and 2011 Tohoku tsunamis: A modeling study, J. Geophys. Res.-Space Phys., 122, 1146–1162, https://doi.org/10.1002/2016JA023116, 2017.
Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., and Vierinen, J.: Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse, Geophys. Res. Lett., 44, 12067-12073, https://doi.org/10.1002/2017GL076054, 2017.
Zhang, S.-R., Coster, A. J., Erickson, P. J., Goncharenko, L. P., Rideout, W., and Vierinen, J.: Traveling ionospheric disturbances and ionospheric perturbations associated with solar flares in September 2017, J. Geophys. Res.-Space Phys., 124, 5894–5917, https://doi.org/10.1029/2019JA026585, 2019.
Short summary
Traveling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of traveling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at midlatitudes.
Traveling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric...