Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-303-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-303-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Leaping and vortex motion of the shock aurora toward the late evening sector observed on 26 February 2023
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Masatoshi Yamauchi
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Magnar Gullikstad Johnsen
Tromsø Geophysical Observatory, UiT The Arctic University of Norway, Tromsø, Norway
Yoshihiro Yokoyama
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Urban Brändström
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Yasunobu Ogawa
National Institute of Polar Research, Tokyo, Japan
Anna Naemi Willer
National Space Institute, Technical University of Denmark (DTU Space), Kongens Lyngby, Denmark
Keisuke Hosokawa
Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
Related authors
No articles found.
Ingeborg Frøystein and Magnar Gullikstad Johnsen
Ann. Geophys., 43, 241–269, https://doi.org/10.5194/angeo-43-241-2025, https://doi.org/10.5194/angeo-43-241-2025, 2025
Short summary
Short summary
The complete time series of the geomagnetic disturbance index (K) from Norwegian magnetic observatories have been digitized. We compare and discuss the tree methods used to derive the index, finding that each method has strengths and weaknesses. In total, we present all K indices derived from Norwegian observatories since the 1930s until today, the used derivation methods and the long historic time series as a whole, enabling critical use for future scientific work.
Tomotaka Tanaka, Yasunobu Ogawa, Yuto Katoh, Mizuki Fukizawa, Anton Artemyev, Vassilis Angelopoulos, Xiao-Jia Zhang, Yoshimasa Tanaka, and Akira Kadokura
EGUsphere, https://doi.org/10.5194/egusphere-2025-768, https://doi.org/10.5194/egusphere-2025-768, 2025
Short summary
Short summary
The magnetic mirror force bends the orbits of electrons precipitating into the atmosphere. It has been suggested that relativistic electrons make much less ionization due to the force than if it did not exist, but the actual effectivity in the atmospheric electron density has not been revealed. We used conjugated observational data from the ELFIN satellite and the EISCAT Tromsø radar to find that the electron density decreased by about 40 % at 80 km altitude because of the force.
Tinna L. Gunnarsdottir, Ingrid Mann, Wuhu Feng, Devin R. Huyghebaert, Ingemar Haeggstroem, Yasunobu Ogawa, Norihito Saito, Satonori Nozawa, and Takuya D. Kawahara
Ann. Geophys., 42, 213–228, https://doi.org/10.5194/angeo-42-213-2024, https://doi.org/10.5194/angeo-42-213-2024, 2024
Short summary
Short summary
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great deal of material that binds with other atmospheric particles and forms so-called meteoric smoke particles. These particles are assumed to influence radar measurements. Here, we have compared radar measurements with simulations of a radar spectrum with and without dust particles and found that dust influences the radar spectrum in the altitude range of 75–85 km.
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024, https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Short summary
We present via simulation how useful monochromatic images taken by a multi-point imager network are for auroral research in the EISCAT_3D project. We apply the generalized-aurora computed tomography (G-ACT) to modeled multiple auroral images and ionospheric electron density data. It is demonstrated that G-ACT provides better reconstruction results than the normal ACT and can interpolate ionospheric electron density at a much higher spatial resolution than observed by the EISCAT_3D radar.
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024, https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Short summary
A novel infrared imaging instrument (OH imager) was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (Sweden). The OH imager is dedicated to the study of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause (80–100 km). Based on a brightness ratio of two OH emission lines, the neutral temperature is estimated at around 87 km. The average daily winter temperature for the period January–April 2023 is 203±10 K.
Thomas B. Leyser, Tima Sergienko, Urban Brändström, Björn Gustavsson, and Michael T. Rietveld
Ann. Geophys., 41, 589–600, https://doi.org/10.5194/angeo-41-589-2023, https://doi.org/10.5194/angeo-41-589-2023, 2023
Short summary
Short summary
Powerful radio waves transmitted into the ionosphere from the ground were used to study electron energization in the pumped ionospheric plasma turbulence, by detecting optical emissions from atomic oxygen. Our results obtained with the EISCAT (European Incoherent Scatter Scientific Association) facilities in northern Norway and optical detection with the ALIS (Auroral Large Imaging System) in northern Sweden suggest that long-wavelength upper hybrid waves are important in accelerating electrons.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Fasil Tesema, Noora Partamies, Daniel K. Whiter, and Yasunobu Ogawa
Ann. Geophys., 40, 1–10, https://doi.org/10.5194/angeo-40-1-2022, https://doi.org/10.5194/angeo-40-1-2022, 2022
Short summary
Short summary
In this study, we present the comparison between an auroral model and EISCAT radar electron densities during pulsating aurorae. We test whether an overpassing satellite measurement of the average energy spectrum is a reasonable estimate for pulsating aurora electron precipitation. When patchy pulsating aurora is dominant in the morning sector, the overpass-averaged spectrum is found to be a reasonable estimate – but not when there is a mix of pulsating aurora types in the post-midnight sector.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Short summary
The paper reports a new finding on space weather effects at around 70–75 ° geographic latitudes. We found that X flares cause an unexpectedly strong ionospheric current driven by solar flares. The effect is as large as a substorm that is known to cause strong auroras and may enhance ongoing substorms. However, it has been overlooked in the past due to the narrow latitudinal range at high latitudes. Since severe magnetic storms often occur with X flares, this may cause geomagnetic hazards.
Masatoshi Yamauchi
Ann. Geophys., 37, 1197–1222, https://doi.org/10.5194/angeo-37-1197-2019, https://doi.org/10.5194/angeo-37-1197-2019, 2019
Short summary
Short summary
Terrestrial ion transport and total escape are synthesized, with stress on the high-latitude polar region and the inner magnetosphere where Custer significantly improved knowledge. After estimating the outflow flux and destinations, complicated ion dynamics in the inner magnetosphere was classified and summarized, through which more than half the O+ is finally lost to space. Together with direct escapes, total O+ escape is high enough to influence the evolution of the biosphere.
Yuta Hozumi, Akinori Saito, Takeshi Sakanoi, Atsushi Yamazaki, and Keisuke Hosokawa
Atmos. Chem. Phys., 18, 16399–16407, https://doi.org/10.5194/acp-18-16399-2018, https://doi.org/10.5194/acp-18-16399-2018, 2018
Short summary
Short summary
Spatial structures of wave disturbances in the upper atmosphere were investigated with space-borne imaging from the International Space Station. The wave disturbance occurred around an altitude of 100 km, and is called a mesospheric bore. The large-scale structure of mesospheric bores has not been fully captured by previous ground-based imagers, but the space-borne imaging captured a bore with a wide field of view, and showed that bores can have a large undulating wave front as long as 2000 km.
Takuo T. Tsuda, Yuta Hozumi, Kento Kawaura, Keisuke Hosokawa, Hidehiko Suzuki, and Takuji Nakamura
Atmos. Meas. Tech., 11, 6163–6168, https://doi.org/10.5194/amt-11-6163-2018, https://doi.org/10.5194/amt-11-6163-2018, 2018
Short summary
Short summary
Polar mesospheric clouds (PMCs) or noctilucent clouds (NLCs) are the highest clouds in the Earth's atmosphere. In this paper, we introduce new PMC observations by the Japanese Geostationary Earth Orbit (GEO) meteorological satellite Himawari-8, which was launched in October 2014.
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Nickolay Ivchenko, Nicola M. Schlatter, Hanna Dahlgren, Yasunobu Ogawa, Yuka Sato, and Ingemar Häggström
Ann. Geophys., 35, 1143–1149, https://doi.org/10.5194/angeo-35-1143-2017, https://doi.org/10.5194/angeo-35-1143-2017, 2017
Short summary
Short summary
Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. A plasma line gives an accurate measure of the electron density and can be used to estimate electron temperature. The occurrence of plasma line enhancements in the EISCAT Svalbard Radar data was investigated. During summer daytime hours the plasma line is detectable in up to 90 % of the data. In winter time the occurrence is a few percent.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
Nadezda Yagova, Natalia Nosikova, Lisa Baddeley, Olga Kozyreva, Dag A. Lorentzen, Vyacheslav Pilipenko, and Magnar G. Johnsen
Ann. Geophys., 35, 365–376, https://doi.org/10.5194/angeo-35-365-2017, https://doi.org/10.5194/angeo-35-365-2017, 2017
Short summary
Short summary
A substorm is a dramatic phenomenon in the near-Earth space that is visualized as an aurora. Mostly substorms are caused by changes in the solar wind, but some of them can develop without any evident trigger. Such substorms together with undisturbed days were investigated using magnetometer and photometer data from Svalbard. Substorm precursors, i.e., specific features in 1–4 mHz geomagnetic and auroral luminosity pulsations, have been found at high geomagnetic latitudes.
T. Takahashi, S. Nozawa, T. T. Tsuda, Y. Ogawa, N. Saito, T. Hidemori, T. D. Kawahara, C. Hall, H. Fujiwara, N. Matuura, A. Brekke, M. Tsutsumi, S. Wada, T. Kawabata, S. Oyama, and R. Fujii
Ann. Geophys., 33, 941–953, https://doi.org/10.5194/angeo-33-941-2015, https://doi.org/10.5194/angeo-33-941-2015, 2015
T. Ishida, Y. Ogawa, A. Kadokura, K. Hosokawa, and Y. Otsuka
Ann. Geophys., 33, 525–530, https://doi.org/10.5194/angeo-33-525-2015, https://doi.org/10.5194/angeo-33-525-2015, 2015
Short summary
Short summary
We studied the localized plasma density enhancements called blobs, which are often produced in the high-latitude ionosphere by the transportation process of plasma or particle precipitations. This subject is important because such structures affect radio wave propagation and can cause scintillation of GNSS signals in the deformation process. This paper is the first report of direct observations of blob deformation during a substorm.
F. Sigernes, S. E. Holmen, D. Biles, H. Bjørklund, X. Chen, M. Dyrland, D. A. Lorentzen, L. Baddeley, T. Trondsen, U. Brändström, E. Trondsen, B. Lybekk, J. Moen, S. Chernouss, and C. S. Deehr
Geosci. Instrum. Method. Data Syst., 3, 241–245, https://doi.org/10.5194/gi-3-241-2014, https://doi.org/10.5194/gi-3-241-2014, 2014
Short summary
Short summary
A two-step procedure to calibrate the spectral sensitivity of auroral all-sky (fish-eye) cameras is outlined. First, center pixel response is obtained by the use of a Lambertian surface and a standard tungsten lamp. Second, all-sky flat-field correction is carried out with an integrating sphere.
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
C. Xiong, H. Lühr, H. Wang, and M. G. Johnsen
Ann. Geophys., 32, 609–622, https://doi.org/10.5194/angeo-32-609-2014, https://doi.org/10.5194/angeo-32-609-2014, 2014
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, K. Asamura, and T. Sakanoi
Ann. Geophys., 32, 499–506, https://doi.org/10.5194/angeo-32-499-2014, https://doi.org/10.5194/angeo-32-499-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
N. M. Schlatter, N. Ivchenko, T. Sergienko, B. Gustavsson, and B. U. E. Brändström
Ann. Geophys., 31, 1681–1687, https://doi.org/10.5194/angeo-31-1681-2013, https://doi.org/10.5194/angeo-31-1681-2013, 2013
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
K. Axelsson, T. Sergienko, H. Nilsson, U. Brändström, Y. Ebihara, K. Asamura, and M. Hirahara
Ann. Geophys., 30, 1693–1701, https://doi.org/10.5194/angeo-30-1693-2012, https://doi.org/10.5194/angeo-30-1693-2012, 2012
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Auroral ionosphere
First observations of continuum emission in dayside aurora
Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere
Application of generalized aurora computed tomography to the EISCAT_3D project
Auroral breakup detection in all-sky images by unsupervised learning
Three-dimensional ionospheric conductivity associated with pulsating auroral patches: reconstruction from ground-based optical observations
The altitude of green OI 557.7 nm and blue N2+ 427.8 nm aurora
Reconstruction of precipitating electrons and three-dimensional structure of a pulsating auroral patch from monochromatic auroral images obtained from multiple observation points
Spatio-temporal development of large-scale auroral electrojet currents relative to substorm onsets
Validation of SSUSI-derived auroral electron densities: comparisons to EISCAT data
Observations of sunlit N2+ aurora at high altitudes during the RENU2 flight
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024, https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Short summary
We present via simulation how useful monochromatic images taken by a multi-point imager network are for auroral research in the EISCAT_3D project. We apply the generalized-aurora computed tomography (G-ACT) to modeled multiple auroral images and ionospheric electron density data. It is demonstrated that G-ACT provides better reconstruction results than the normal ACT and can interpolate ionospheric electron density at a much higher spatial resolution than observed by the EISCAT_3D radar.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023, https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Short summary
We measured the height of green and blue aurorae using thousands of camera images recorded over a 7-year period. Both colours are typically brightest at about 114 km altitude. When they peak at higher altitudes the blue aurora is usually higher than the green aurora. This information will help other studies which need an estimate of the auroral height. We used a computer model to explain our observations and to investigate how the green aurora is produced.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Stefan Bender, Patrick J. Espy, and Larry J. Paxton
Ann. Geophys., 39, 899–910, https://doi.org/10.5194/angeo-39-899-2021, https://doi.org/10.5194/angeo-39-899-2021, 2021
Short summary
Short summary
The coupling of the atmosphere to the space environment has become recognized as an important driver of atmospheric chemistry and dynamics. We have validated the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) products for average electron energy and electron energy flux by comparison to EISCAT electron density profiles. The good agreement shows that SSUSI far-UV observations can be used to provide ionization rate profiles throughout the auroral region.
Pål Gunnar Ellingsen, Dag Lorentzen, David Kenward, James H. Hecht, J. Scott Evans, Fred Sigernes, and Marc Lessard
Ann. Geophys., 39, 849–859, https://doi.org/10.5194/angeo-39-849-2021, https://doi.org/10.5194/angeo-39-849-2021, 2021
Short summary
Short summary
Using the RENU2 rocket and ground-based instruments, we show that significant parts of the blue aurora above Svalbard at the time of launch were sunlit aurora. A sunlit aurora occurs when nitrogen molecules are ionised by extreme UV sunlight and subsequently hit by electrons from the Sun, resulting in blue and violet emissions. Understanding the source of an auroral emission gives insight into the interaction between the Sun and the Earth's upper atmosphere.
Cited articles
Amm, O.: Method of characteristics in spherical geometry applied to a Harang-discontinuity situation, Ann. Geophys., 16, 413–424, https://doi.org/10.1007/s00585-998-0413-2, 1998. a
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planet. Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. a, b
Araki, T.: Global structure of geomagnetic sudden commencements, Planet. Space Sc., 25, 373–384, https://doi.org/10.1016/0032-0633(77)90053-8, 1977. a
Belakhovsky, V. B., Pilipenko, V. A., Sakharov, Y. A., Lorentzen, D. L., and Samsonov, S. N.: Geomagnetic and ionospheric response to the interplanetary shock on January 24, 2012, Earth, Planet. Space, 69, 105, https://doi.org/10.1186/s40623-017-0696-1, 2017. a
Craven, J. D., Frank, L. A., Russell, C. T., Smith, E. J., and Lapping, R. P.: Global auroral responses to magnetospheric compressions by shocks in the solar wind: Two case studies. University of Iowa [report], https://ntrs.nasa.gov/citations/19860007325 (last access: 5 June 2025), 1985. a
Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., and Itonaga, M.: A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res.-Space, 108, 1416, https://doi.org/10.1029/2002JA009407, 2003a. a
Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., and Itonaga, M.: A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res.-Space, 108, 1417, https://doi.org/10.1029/2002JA009763, 2003b. a
Fukizawa, M., Sakanoi, T., Miyoshi, Y., Hosokawa, K., Shiokawa, K., Katoh, Y., Kazama, Y., Kumamoto, A., Tsuchiya, F., Miyashita, Y., Tanaka, Y. M., Kasahara, Y., Ozaki, M., Matsuoka, A., Matsuda, S., Hikishima, M., Oyama, S., Ogawa, Y., Kurita, S., and Fujii, R.: Electrostatic Electron Cyclotron Harmonic Waves as a Candidate to Cause Pulsating Auroras, Geophys. Res. Lett., 45, 12661–12668, https://doi.org/10.1029/2018GL080145, 2018. a, b
Fukizawa, M., Sakanoi, T., Miyoshi, Y., Kazama, Y., Katoh, Y., Kasahara, Y., Matsuda, S., Matsuoka, A., Kurita, S., Shoji, M., Teramoto, M., Imajo, S., Sinohara, I., Wang, S.-Y., Tam, S. W.-Y., Chang, T.-F., Wang, B.-J., and Jun, C.-W.: Pitch-Angle Scattering of Inner Magnetospheric Electrons Caused by ECH Waves Obtained With the Arase Satellite, Geophys. Res. Lett., 47, e2020GL089926, https://doi.org/10.1029/2020GL089926, 2020. a
Gjerloev, J. W.: The SuperMAG data processing technique, J. Geophys. Res.-Space, 117, A09213, https://doi.org/10.1029/2012JA017683, 2012. a
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res.-Space, 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994. a
Gosling, J. T. and Pizzo, V. J.: Formation and Evolution of Corotating Interaction Regions and their Three Dimensional Structure, Space Sci. Rev., 89, 21–52, https://doi.org/10.1023/A:1005291711900, 1999. a
Haerendel, G.: Auroral arcs as sites of magnetic stress release, J. Geophys. Res.-Space, 112, A09214, https://doi.org/10.1029/2007JA012378, 2007. a
Hosokawa, K., Oyama, S.-I., Ogawa, Y., Miyoshi, Y., Kurita, S., Teramoto, M., Nozawa, S., Kawabata, T., Kawamura, Y., Tanaka, Y.-M., Miyaoka, H., Kataoka, R., Shiokawa, K., Brändström, U., Turunen, E., Raita, T., Johnsen, M. G., Hall, C., Hampton, D., Ebihara, Y., Kasahara, Y., Matsuda, S., Shinohara, I., and Fujii, R.: A Ground-Based Instrument Suite for Integrated High-Time Resolution Measurements of Pulsating Aurora With Arase, J. Geophys. Res.-Space, 128, e2023JA031527, https://doi.org/10.1029/2023JA031527, 2023. a
Kasahara, S., Miyoshi, Y., Yokota, S., Mitani, T., Kasahara, Y., Matsuda, S., Kumamoto, A., Matsuoka, A., Kazama, Y., Frey, H. U., Angelopoulos, V., Kurita, S., Keika, K., Seki, K., and Shinohara, I.: Pulsating aurora from electron scattering by chorus waves, Nature, 554, 337–340, https://doi.org/10.1038/nature25505, 2018. a, b
Kikuchi, T.: Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator, J. Geophys. Res.-Space, 119, 1131–1156, https://doi.org/10.1002/2013JA019515, 2014. a
Kozlovsky, A., Safargaleev, V., Østgaard, N., Turunen, T., Koustov, A., Jussila, J., and Roldugin, A.: On the motion of dayside auroras caused by a solar wind pressure pulse, Ann. Geophys., 23, 509–521, https://doi.org/10.5194/angeo-23-509-2005, 2005. a
Imajo, S., Matsuoka, A., Toh, H., and Iyemori, T.: Mid-latitude Geomagnetic Indices ASY and SYM (ASY/SYM Indices), World Data Center for Geomagnetism (Kyoto) [data set], https://doi.org/10.14989/267216, 2022. a
Laundal, K. M. and Østgaard, N.: Persistent global proton aurora caused by high solar wind dynamic pressure, J. Geophys. Res.-Space, 113, A08231, https://doi.org/10.1029/2008JA013147, 2008. a
Liou, K., Wu, C.-C., Lepping, R. P., Newell, P. T., and Meng, C.-I.: Midday sub-auroral patches (MSPs) associated with interplanetary shocks, Geophys. Res. Lett., 29, 18-1–18-4, https://doi.org/10.1029/2001GL014182, 2002. a
Liou, K., Newell, P. T., Shue, J.-H., Meng, C.-I., Miyashita, Y., Kojima, H., and Matsumoto, H.: “Compression aurora”: Particle precipitation driven by long-duration high solar wind ram pressure, J. Geophys. Res.-Space, 112, A11216, https://doi.org/10.1029/2007JA012443, 2007. a
Liu, J. J., Hu, H. Q., Han, D. S., Araki, T., Hu, Z. J., Zhang, Q. H., Yang, H. G., Sato, N., Yukimatu, A. S., and Ebihara, Y.: Decrease of auroral intensity associated with reversal of plasma convection in response to an interplanetary shock as observed over Zhongshan station in Antarctica, J. Geophys. Res.-Space, 116, A03210, https://doi.org/10.1029/2010JA016156, 2011. a, b, c, d
Liu, J.-J., Hu, H.-Q., Han, D.-S., Xing, Z.-Y., Hu, Z.-J., Huang, D.-H., and Yang, H.-G.: Response of Nightside Aurora to Interplanetary Shock from Ground Optical Observation, Chin. J. Geophys., 56, 598–611, https://doi.org/10.1002/cjg2.20056, 2013. a
Liu, N., Su, Z., Jin, Y., He, Z., Yu, J., Li, K., Chen, Z., and Cui, J.: Plasmaspheric High-Frequency Whistlers as a Candidate Cause of Shock Aurora at Earth, Geophys. Res. Lett., 50, e2023GL105631, https://doi.org/10.1029/2023GL105631, 2023. a
Matsushita, S.: On sudden commencements of magnetic storms at higher latitudes, J. Geophys. Res., 62, 162–166, https://doi.org/10.1029/JZ062i001p00162, 1957. a
Matsushita, S.: Studies on sudden commencements of geomagnetic storms using IGY data from United States stations, J. Geophys. Res., 65, 1423–1435, https://doi.org/10.1029/JZ065i005p01423, 1960. a
Motoba, T., Kadokura, A., Ebihara, Y., Frey, H. U., Weatherwax, A. T., and Sato, N.: Simultaneous ground-satellite optical observations of postnoon shock aurora in the Southern Hemisphere, J. Geophys. Res.-Space, 114, A07209, https://doi.org/10.1029/2008JA014007, 2009. a, b, c, d
Motoba, T., Ebihara, Y., Kadokura, A., and Weatherwax, A. T.: Fine-scale transient arcs seen in a shock aurora, J. Geophys. Res.-Space, 119, 6249–6255, https://doi.org/10.1002/2014JA020229, 2014. a
Nanjo, S.: The video version of Figure 3, Swedish Institute of Space Physics [video], https://doi.org/10.5446/69281, 2024a. a
Nanjo, S.: The video version of Figure 4, Swedish Institute of Space Physics [video], https://doi.org/10.5446/69280, 2024b. a
Newell, P. T. and Gjerloev, J. W.: Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res.-Space, 116, A12211, https://doi.org/10.1029/2011JA016779, 2011. a
Ni, B., Gu, X., Fu, S., Xiang, Z., and Lou, Y.: A statistical survey of electrostatic electron cyclotron harmonic waves based on THEMIS FFF wave data, J. Geophys. Res.-Space, 122, 3342–3353, https://doi.org/10.1002/2016JA023433, 2017. a
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., Mende, S. B., Bonnell, J. W., Contel, O. L., Cully, C., Ergun, R., and Auster, U.: Identifying the Driver of Pulsating Aurora, Science, 330, 81–84, https://doi.org/10.1126/science.1193186, 2010. a, b
Nishimura, Y., Kikuchi, T., Ebihara, Y., Yoshikawa, A., Imajo, S., Li, W., and Utada, H.: Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations, Earth Planet. Space, 68, 144, https://doi.org/10.1186/s40623-016-0517-y, 2016. a, b, c
Nishimura, Y., Lessard, M. R., Katoh, Y., Miyoshi, Y., Grono, E., Partamies, N., Sivadas, N., Hosokawa, K., Fukizawa, M., Samara, M., Michell, R. G., Kataoka, R., Sakanoi, T., Whiter, D. K., Oyama, S.-i., Ogawa, Y., and Kurita, S.: Diffuse and Pulsating Aurora, Space Sci. Rev., 216, 4, https://doi.org/10.1007/s11214-019-0629-3, 2020. a
NOAA National Centers for Environmental Information: DSCOVR Solar Wind Data Portal, NOAA [data set], https://www.ngdc.noaa.gov/dscovr/portal/index.html, last access: 5 June 2025. a
Omura, Y.: Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere, Earth Planet. Space, 73, 95, https://doi.org/10.1186/s40623-021-01380-w, 2021. a
Omura, Y., Nakamura, S., Kletzing, C. A., Summers, D., and Hikishima, M.: Nonlinear wave growth theory of coherent hiss emissions in the plasmasphere, J. Geophys. Res.-Space, 120, 7642–7657, https://doi.org/10.1002/2015JA021520, 2015. a
Phan, T. D. and Paschmann, G.: Low-latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion, J. Geophys. Res.-Space, 101, 7801–7815, https://doi.org/10.1029/95JA03752, 1996. a
Samara, M., Michell, R., and Hampton, D.: BG3 Glass Filter Effects on Quantifying Rapidly Pulsating Auroral Structures, Adv. Remote Sens., 1, 53–57, https://doi.org/10.4236/ars.2012.13005, 2012. a
Sano, Y. and Nagano, H.: Early history of sudden commencement investigation and some newly discovered historical facts, Hist. Geo- Space Sci., 12, 131–162, https://doi.org/10.5194/hgss-12-131-2021, 2021. a
Slinker, S. P., Fedder, J. A., Hughes, W. J., and Lyon, J. G.: Response of the ionosphere to a density pulse in the solar wind: Simulation of traveling convection vortices, Geophys. Res. Lett., 26, 3549–3552, https://doi.org/10.1029/1999GL010688, 1999. a
Sonett, C. P., Colburn, D. S., Davis, L., Smith, E. J., and Coleman, P. J.: Evidence for a Collision-Free Magnetohydrodynamic Shock in Interplanetary Space, Phys. Rev. Lett., 13, 153–156, https://doi.org/10.1103/PhysRevLett.13.153, 1964. a
Swedish Institute of Space Physics (IRF): All-sky camera images from Kiruna on 26 February 2023, Swedish Institute of Space Physics (IRF) [data set], https://www.irf.se/alis/allsky/krn/2023/02/26/19/ (last sccess: 5 June 2025), 2023. a
Tanskanen, E. I.: A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined, J. Geophys. Res.-Space, 114, A05204, https://doi.org/10.1029/2008JA013682, 2009. a
Tsurutani, B. T., Zhou, X.-Y., Vasyliunas, V. M., Haerendel, G., Arballo, J. K., and Lakhina, G. S.: Interplanetary Shocks, Magnetopause Boundary Layers and Dayside Auroras: The Importance of a Very Small Magnetospheric Region, Surv. Geophys., 22, 101–130, https://doi.org/10.1023/A:1012952414384, 2001. a, b
University of Electro-Communications: All-sky camera images from Skibotn on 26 February 2023, University of Electro-Communications [data set], http://darndeb08.cei.uec.ac.jp/~nanjo/public/skibotn_imgs/2022_season/20230226/ (last access: 5 June 2025), 2023. a
van Bemmelan, W.: On magnetic disturbances as recorded at Batavia. Royal Netherlands Academy of Arts and Sciences (KNAW) [report], https://dwc.knaw.nl/DL/publications/PU00013747.pdf (last access: 5 June 2025), 1906. a
Wang, C., Branduardi-Raymont, G., and Escoubet, C. P.: Recent Advance in the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) Mission, Chin. J. Space Sci., 42, 568–573, https://doi.org/10.11728/cjss2022.04.yg08, 2022. a
Wilson, C. R. and Sugiura, M.: Hydromagnetic interpretation of sudden commencements of magnetic storms, J. Geophys. Res., 66, 4097–4111, https://doi.org/10.1029/JZ066i012p04097, 1961. a
Yamauchi, M., Iyemori, T., Frey, H., and Henderson, M.: Unusually quick development of a 4000 nT substorm during the initial 10 min of the 29 October 2003 magnetic storm, J. Geophys. Res.-Space, 111, A04217, https://doi.org/10.1029/2005JA011285, 2006. a
Yamauchi, M., Johnsen, M. G., Enell, C.-F., Tjulin, A., Willer, A., and Sormakov, D. A.: High-latitude crochet: solar-flare-induced magnetic disturbance independent from low-latitude crochet, Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, 2020. a
Zhou, X. and Tsurutani, B. T.: Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks), Geophys. Res. Lett., 26, 1097–1100, https://doi.org/10.1029/1999GL900173, 1999. a, b, c, d
Zhou, X., Strangeway, R. J., Anderson, P. C., Sibeck, D. G., Tsurutani, B. T., Haerendel, G., Frey, H. U., and Arballo, J. K.: Shock aurora: FAST and DMSP observations, J. Geophys. Res.-Space, 108, 8019, https://doi.org/10.1029/2002JA009701, 2003. a, b
Zhou, X., Haerendel, G., Moen, J. I., Trondsen, E., Clausen, L., Strangeway, R. J., Lybekk, B., and Lorentzen, D. A.: Shock aurora: Field-aligned discrete structures moving along the dawnside oval, J. Geophys. Res.-Space, 122, 3145–3162, https://doi.org/10.1002/2016JA022666, 2017. a, b, c
Zhou, X.-Y., Fukui, K., Carlson, H. C., Moen, J. I., and Strangeway, R. J.: Shock aurora: Ground-based imager observations, J. Geophys. Res.-Space, 114, A12216, https://doi.org/10.1029/2009JA014186, 2009. a, b
Editor-in-chief
The study is devoted to a shock auroral event that occurred on February 26, 2023, in northern Scandinavia, and represents the first time such nighttime auroral features have been captured by ground-based cameras. Shock auroras result from a very specific driving impulse in the solar wind. While the primary effects appear on the dayside of the Earth, the authors succeeded in observing the nightside signatures, which are rare and difficult to detect. The study is a successful scientific achievement as it presents newly discovered phenomena that provide new insights into solar wind interactions with the nightside ionosphere.
The study is devoted to a shock auroral event that occurred on February 26, 2023, in northern...
Short summary
Our research explores the shock aurora, which is typically observed on the dayside due to the rapid compression of the Earth's magnetic field. We observed this rare aurora on the nightside, a region where such events are difficult to detect. Using ground-based cameras, we identified new features, including leaping and vortex-like patterns. These findings offer a fresh insight into the interactions between the solar wind and the magnetosphere, enhancing our understanding of space weather and its effects.
Our research explores the shock aurora, which is typically observed on the dayside due to the...