Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-419-2024
https://doi.org/10.5194/angeo-42-419-2024
Regular paper
 | 
22 Oct 2024
Regular paper |  | 22 Oct 2024

Proton plasma asymmetries between the convective-electric-field hemispheres of Venus' dayside magnetosheath

Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana

Related authors

Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang-Pan method
Xiaowen Hu, Guoqiang Wang, Zonghao Pan, and Tielong Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-46,https://doi.org/10.5194/angeo-2021-46, 2021
Preprint withdrawn
Short summary
Reflection of low-frequency fast magnetosonic waves at the local two-ion cutoff frequency: observation in the plasmasphere
Geng Wang, Mingyu Wu, Guoqiang Wang, Sudong Xiao, Irina Zhelavskaya, Yuri Shprits, Yuanqiang Chen, Zhengyang Zou, Zhonglei Gao, Wen Yi, and Tielong Zhang
Ann. Geophys., 39, 613–625, https://doi.org/10.5194/angeo-39-613-2021,https://doi.org/10.5194/angeo-39-613-2021, 2021
Short summary
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020,https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017,https://doi.org/10.5194/angeo-35-1015-2017, 2017
Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016,https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Magnetosheath
Scale size estimation and flow pattern recognition around a magnetosheath jet
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024,https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Scalar-potential mapping of the steady-state magnetosheath model
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024,https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Local bow shock environment during magnetosheath jet formation: results from a hybrid-Vlasov simulation
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023,https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Statistical distribution of mirror-mode-like structures in the magnetosheaths of unmagnetized planets – Part 2: Venus as observed by the Venus Express spacecraft
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023,https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Magnetosheath plasma flow model around Mercury
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021,https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary

Cited articles

Bader, A., Stenberg Wieser, G., André, M., Wieser, M., Futaana, Y., Persson, M., Nilsson, H., and Zhang, T.: Proton Temperature Anisotropies in the Plasma Environment of Venus, J. Geophys. Res.-Space, 124, 3312–3330, https://doi.org/10.1029/2019JA026619, 2019. a
Barabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., Holmström, M., Yamauchi, M., Asamura, K., Bochsler, P., Wurz, P., Cerulli-Irelli, R., Mura, A., Milillo, A., Maggi, M., Orsini, S., Coates, A. J., Linder, D. R., Kataria, D. O., Curtis, C. C., Hsieh, K. C., Sandel, B. R., Frahm, R. A., Sharber, J. R., Winningham, J. D., Grande, M., Kallio, E., Koskinen, H., Riihelä, P., Schmidt, W., Säles, T., Kozyra, J. U., Krupp, N., Woch, J., Livi, S., Luhmann, J. G., McKenna-Lawlor, S., Roelof, E. C., Williams, D. J., Sauvaud, J. A., Fedorov, A., and Thocaven, J. J.: The analyzer of space plasmas and energetic atoms (ASPERA-3) for the mars express mission, Space Sci. Rev., 126, 113–164, https://doi.org/10.1007/s11214-006-9124-8, 2006. a
Barabash, S., Fedorov, A., Lundin, R., and Sauvaud, J. A.: Martian atmospheric erosion rates, Science, 315, 501–503, https://doi.org/10.1126/science.1134358, 2007a. a, b
Barabash, S., Fedorov, A., Sauvaud, J. J., Lundin, R., Russell, C. T., Futaana, Y., Zhang, T., Andersson, H., Brinkfeldt, K., Grigoriev, A., Holmström, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A. J., Kataria, D. O., Linder, D. R., Curtis, C. C., Hsieh, K. C., Sandel, B. R., Grande, M., Gunell, H., Koskinen, H. E., Kallio, E., Riihelä, P., Säles, T., Schmidt, W., Kozyra, J., Krupp, N., Fränz, M., Woch, J., Luhmann, J. G., McKenna-Lawlor, S., Mazelle, C., Thocaven, J. J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J. D., Frahm, R. A., Scherrer, J., Sharber, J. R., Wurz, P., and Bochsler, P.: The loss of ions from Venus through the plasma wake, Nature, 450, 650–653, https://doi.org/10.1038/nature06434, 2007b. a, b, c
Barabash, S., Sauvaud, J. A., Gunell, H., Andersson, H., Grigoriev, A., Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., Asamura, K., Baumjohann, W., Zhang, T., Coates, A. J., Linder, D. R., Kataria, D. O., Curtis, C. C., Hsieh, K. C., Sandel, B. R., Fedorov, A., Mazelle, C., Thocaven, J. J., Grande, M., Koskinen, H. E., Kallio, E., Säles, T., Riihela, P., Kozyra, J. U., Krupp, N., Woch, J., Luhmann, J. G., McKenna-Lawlor, S., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E. C., Brandt, P. C., Russell, C. T., Szego, K., Winningham, J. D., Frahm, R. A., Scherrer, J., Sharber, J. R., Wurz, P., and Bochsler, P.: The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission, Planet. Space Sci., 55, 1772–1792, https://doi.org/10.1016/j.pss.2007.01.014, 2007c. a
Download
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.