Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-395-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-395-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Calibrating estimates of ionospheric long-term change
Christopher John Scott
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Berkshire, RG6 6BB, UK
RAL Space, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
Matthew N. Wild
RAL Space, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
Luke Anthony Barnard
Department of Meteorology, University of Reading, Berkshire, RG6 6BB, UK
Bingkun Yu
Institute of Deep Space Sciences, Deep Space Exploration Laboratory, Hefei, 230088, China
Tatsuhiro Yokoyama
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
Michael Lockwood
Department of Meteorology, University of Reading, Berkshire, RG6 6BB, UK
Cathryn Mitchel
Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
John Coxon
Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
Andrew Kavanagh
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Related authors
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Christopher J. Scott, Shannon Jones, and Luke A. Barnard
Ann. Geophys., 39, 309–319, https://doi.org/10.5194/angeo-39-309-2021, https://doi.org/10.5194/angeo-39-309-2021, 2021
Short summary
Short summary
The composition of the upper atmosphere has been difficult to measure with localised observations relying on spacecraft, suborbital rockets or measurements of airglow from ground-based observatories. The height profile of ionisation within the neutral upper atmosphere is influenced by the composition of the neutral gas. We present a method for determining the neutral upper-atmosphere composition from measurements of the ionisation profile and compare these with spacecraft measurements.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Christopher J. Scott and Patrick Major
Ann. Geophys., 36, 1243–1254, https://doi.org/10.5194/angeo-36-1243-2018, https://doi.org/10.5194/angeo-36-1243-2018, 2018
Short summary
Short summary
The variability of the Earth's ionosphere (the electrified region of the Earth's upper atmosphere) results from external forcing from above (through solar activity and space weather effects) and from below (via natural sources such as lightning storms and tectonics). Bombing raids over Europe during World War II were used to determine the quantitative impact of explosions on the ionosphere. It was found that raids using more than 300 tonnes of explosives weakened the ionosphere for up to 5 h.
C. J. Scott and R. Stamper
Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, https://doi.org/10.5194/angeo-33-449-2015, 2015
Short summary
Short summary
We use a novel technique to infer long-term compositional changes to the thermosphere from the annual variation of the ionospheric F2 region. A global analysis of these data reveal that long-term changes differ between geographic locations in a way that is very similar to the observed variation in the ionospheric response to increased atmospheric CO2 levels. In the absence of long-term measurements of thermospheric composition, further, detailed, modelling work is required.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
C. J. Scott, R. Stamper, and H. Rishbeth
Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, https://doi.org/10.5194/angeo-32-113-2014, 2014
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
Gareth Chisham, Andrew J. Kavanagh, Neil Cobbett, Paul Breen, and Tim Barnes
Ann. Geophys., 42, 1–15, https://doi.org/10.5194/angeo-42-1-2024, https://doi.org/10.5194/angeo-42-1-2024, 2024
Short summary
Short summary
Solar tides in the atmosphere are driven by solar heating on the dayside of the Earth. They result in large-scale periodic motion of the upper atmosphere. This motion can be measured by ground-based radars. This paper shows that making measurements at a higher time resolution than the standard operation provides a better description of higher-frequency tidal variations. This will improve the inputs to empirical atmospheric models and the benefits of data assimilation.
Penghao Tian, Bingkun Yu, Hailun Ye, Xianghui Xue, Jianfei Wu, and Tingdi Chen
Atmos. Chem. Phys., 23, 13413–13431, https://doi.org/10.5194/acp-23-13413-2023, https://doi.org/10.5194/acp-23-13413-2023, 2023
Short summary
Short summary
Modeling and prediction of ionospheric irregularities is an important topic in upper-atmospheric and upper-ionospheric physics. We proposed an artificial intelligence model to reconstruct the E-region ionospheric irregularities and first developed an open-source application for the community. The model reveals complex relationships between ionospheric irregularities and external driving factors. The findings suggest that spatiotemporal information plays an important role in the reconstruction.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Christopher J. Scott, Shannon Jones, and Luke A. Barnard
Ann. Geophys., 39, 309–319, https://doi.org/10.5194/angeo-39-309-2021, https://doi.org/10.5194/angeo-39-309-2021, 2021
Short summary
Short summary
The composition of the upper atmosphere has been difficult to measure with localised observations relying on spacecraft, suborbital rockets or measurements of airglow from ground-based observatories. The height profile of ionisation within the neutral upper atmosphere is influenced by the composition of the neutral gas. We present a method for determining the neutral upper-atmosphere composition from measurements of the ionisation profile and compare these with spacecraft measurements.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Maude Gibbins and Andrew J. Kavanagh
Geosci. Instrum. Method. Data Syst., 9, 223–238, https://doi.org/10.5194/gi-9-223-2020, https://doi.org/10.5194/gi-9-223-2020, 2020
Short summary
Short summary
Medium-frequency radars measure winds (between 55 and 100 km altitude). As part of their final year undergraduate project, the lead author used two radars in Antarctica to look at how the wind speed varied with the aim of identifying when the wind was too fast to be a real measurement. Instead, we discovered that the variance depends strongly on factors in the analysis technique rather than on natural features such as gravity waves, and that the Sun and geomagnetic activity play a role.
Abimbola O. Afolayan, Mandeep Jit Singh, Mardina Abdullah, Suhaila M. Buhari, Tatsuhiro Yokoyama, and Pornchai Supnithi
Ann. Geophys., 37, 733–745, https://doi.org/10.5194/angeo-37-733-2019, https://doi.org/10.5194/angeo-37-733-2019, 2019
Short summary
Short summary
The equatorial spread F (ESF) is a nighttime phenomenon that can have a deleterious effect on the radio communication system. We investigated the parameters influencing the seasonal morphology of the range type spread F (RSF) using ionosonde data from different longitude sectors. The observed RSF occurrence features showed distinct patterns across these sectors, including seasonal asymmetry. This asymmetry was attributed to the probable effect of the zonal wind reversal and gravity waves.
Bingkun Yu, Xianghui Xue, Xin'an Yue, Chengyun Yang, Chao Yu, Xiankang Dou, Baiqi Ning, and Lianhuan Hu
Atmos. Chem. Phys., 19, 4139–4151, https://doi.org/10.5194/acp-19-4139-2019, https://doi.org/10.5194/acp-19-4139-2019, 2019
Short summary
Short summary
It reports the long-term climatology of the intensity of Es layers from COSMIC satellites. The global Es maps present high-resolution spatial distributions and seasonal dependence. It mainly occurs at mid-latitudes and polar regions. Based on wind shear theory, simulation results indicate the convergence of vertical ion velocity could partially explain the Es seasonal dependence and some disagreements between observations and simulations suggest other processes play roles in the Es variations.
Bingkun Yu, Xianghui Xue, Chengling Kuo, Gaopeng Lu, Xiankang Dou, Qi Gao, Jianfei Wu, Mingjiao Jia, Chao Yu, and Xiushu Qie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1025, https://doi.org/10.5194/acp-2018-1025, 2018
Preprint withdrawn
Short summary
Short summary
This paper explores the relationship between the intensifications of atomic sodium layer and Es layer in the Mesosphere/Lower Thermosphere (MLT) region (the earth's upper atmosphere at altitudes between 90 and 130 km above ground). The multi-instrument experiment of sodium lidar observations, ionospheric observations and sodium chemical simulations advances our understanding of the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms.
Christopher J. Scott and Patrick Major
Ann. Geophys., 36, 1243–1254, https://doi.org/10.5194/angeo-36-1243-2018, https://doi.org/10.5194/angeo-36-1243-2018, 2018
Short summary
Short summary
The variability of the Earth's ionosphere (the electrified region of the Earth's upper atmosphere) results from external forcing from above (through solar activity and space weather effects) and from below (via natural sources such as lightning storms and tectonics). Bombing raids over Europe during World War II were used to determine the quantitative impact of explosions on the ionosphere. It was found that raids using more than 300 tonnes of explosives weakened the ionosphere for up to 5 h.
Simon Thomas, Mathew Owens, Mike Lockwood, and Chris Owen
Ann. Geophys., 35, 825–838, https://doi.org/10.5194/angeo-35-825-2017, https://doi.org/10.5194/angeo-35-825-2017, 2017
Short summary
Short summary
Galactic cosmic rays are high-energy particles from outside of the solar system. The products of their interaction with the atmosphere are counted by a network of neutron monitors. The number of cosmic rays reaching Earth is affected by the magnetic field embedded in the solar wind. The result is a number of regular variations in the neutron monitor data, including a diurnal variation. We have found that this variation is influenced by 1–2 h by the polarity of the Sun's magnetic field.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
C. J. Scott and R. Stamper
Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, https://doi.org/10.5194/angeo-33-449-2015, 2015
Short summary
Short summary
We use a novel technique to infer long-term compositional changes to the thermosphere from the annual variation of the ionospheric F2 region. A global analysis of these data reveal that long-term changes differ between geographic locations in a way that is very similar to the observed variation in the ionospheric response to increased atmospheric CO2 levels. In the absence of long-term measurements of thermospheric composition, further, detailed, modelling work is required.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
C. J. Scott, R. Stamper, and H. Rishbeth
Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, https://doi.org/10.5194/angeo-32-113-2014, 2014
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–atmosphere interactions
On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3
Analysis of in situ measurements of electron, ion and neutral temperatures in the lower thermosphere–ionosphere
Investigation of PMSE layers during solar maximum and solar minimum
Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector
Mid-latitude neutral wind responses to sub-auroral polarization streams
Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition
Entangled dynamos and Joule heating in the Earth's ionosphere
Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere
Quasi-10 d wave modulation of an equatorial ionization anomaly during the Southern Hemisphere stratospheric warming of 2002
Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
EGUsphere, https://doi.org/10.5194/egusphere-2023-977, https://doi.org/10.5194/egusphere-2023-977, 2023
Short summary
Short summary
We investigated the relationship between PMSE layers and the solar cycle. Our results indicate that PMSE altitude, echo power, and layer thickness are on average higher during solar maximum than solar minimum. Higher electron densities at ionospheric altitudes might be necessary to observe multi-layered PMSE. We observed that the thickness decreases as the number of multi-layers increase. We hypothesized that the thickness of PMSE layers may be related to the vertical wavelength of gravity waves
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Daniel D. Billett, Kathryn A. McWilliams, Robert B. Kerr, Jonathan J. Makela, Alex T. Chartier, J. Michael Ruohoniemi, Sudha Kapali, Mike A. Migliozzi, and Juanita Riccobono
Ann. Geophys., 40, 571–583, https://doi.org/10.5194/angeo-40-571-2022, https://doi.org/10.5194/angeo-40-571-2022, 2022
Short summary
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020, https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Short summary
Severe meteorological storm Fabienne passing above central Europe was observed. Significant variations of atmospheric and ionospheric parameters were detected. Above Europe, stratospheric temperature and wind significantly changed in coincidence with frontal transition. Within ionospheric parameters, we have detected significant wave-like activity shortly after the cold front crossed the observational point. During the storm event, we have observed strong horizontal plasma flow shears.
Xiaohua Mo and Donghe Zhang
Ann. Geophys., 38, 9–16, https://doi.org/10.5194/angeo-38-9-2020, https://doi.org/10.5194/angeo-38-9-2020, 2020
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Cited articles
Bilitza, D. and Eyfrig, R.: Modell Zur Darstellung Der Hone Des F2-maximums Mit Hilfe Des M(3000)F2-Wertes Der CCIR, Kleinheubacher Berichte, 21, 167–174, 1978. a
Bremer, J.: Ionospheric Trends in Mid-Latitudes as a Possible Indicator of the Atmospheric Greenhouse Effect, J. Atmos. Terr. Phys., 54, 1505–1511, 1992. a
Bremer, J.: Trends in the ionospheric E and F regions over Europe, Ann. Geophys., 16, 986–996, https://doi.org/10.1007/s00585-998-0986-9, 1998. a, b
Cnossen, I. and Richmond, A. D.: Modelling the Effects of Changes in the Earth's Magnetic Field from 1957 to 1997 on the Ionospheric hmF2 and foF2 Parameters, J. Atmos. Sol.-Terr. Phy., 70, 1512–1524, 2008. a
Davies, K.: The Effect of the Earth's Magnetic Field on m.u.f. Calculations, J. Atmos. Sol.-Terr. Phy., 16, 187–189, 1959. a
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a
Elias, A. G.: Trends in the F2 Ionospheric Layer Due to Long-Term Variations in the Earth's Magnetic Field, J. Atmos. Sol.-Terr. Phy., 71, 1602–1609, 2009. a
Jarvis, M., Jenkins, B., and Rodger, A.: Southern Hemisphere Observations of a Long-Term Decrease in F Region Altitude and Thermospheric Wind Providing Possible Evidence for Global Thermospheric Cooling, J. Geophys. Res., 130, 20774–20787, https://doi.org/10.1029/98JA01629, 1998. a, b, c, d, e, f, g
King, G. A. M.: The Ionospheric F-region during a Storm, Planet. Space Sci., 9, 95–98, https://doi.org/10.1016/0032-0633(62)90179-4, 1963. a
Lastovicka, J.: Trends in the Upper Atmosphere and Ionosphere: Recent Progress, J. Geophys. Res.-Space, 118, 3924–3935, https://doi.org/10.1002/jgra.50341, 2013. a
Lockwood, M.: A Simple M-factor Algorithm for Improved Estimation of the Basic Maximum Usable Frequency of Radio Waves Reflected from the Ionospheric F Region, Proc. IEE – F, 130, 296–302, https://doi.org/10.1049/ip-f-1.1983.0049, 1983. a
Lockwood, M., Chambodut, A., Finch, I. D., Barnard, L. A., Owens, M. J., and Haines, C.: Time-of-day/Time-of-year Response Functions of Planetary Geomagnetic Indices, J. Space Weather Spac., 9, A20, https://doi.org/10.1051/swsc/2019017, 2019. a, b
McCrea, I. W., Lester, M., Robinson, T. B., Wade, N. M., and Jones, T. B.: On the Identification and Occurrence of Ion Frictional Heating Events in the High-Latitude Ionosphere, J. Atmos. Terr. Phy., 53, 587–597, https://doi.org/10.1016/0021-9169(91)90087-N, 1991. a
Mikhailov, A. V.: Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypotheses be reconciled?, Ann. Geophys., 24, 2533–2541, https://doi.org/10.5194/angeo-24-2533-2006, 2006. a
Mikhailov, A. V. and Marin, D.: An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept, Ann. Geophys., 19, 733–748, https://doi.org/10.5194/angeo-19-733-2001, 2001. a
Millward, G. H., Moffatt, R. J., Queegan, W., and Fuller-Rowell, T. J.: Ionospheric F2 layer seasonal and semi-annual variations, J. Geophys. Res., 101, 5149–5156, 1996. a
MU Radar Management Group: MU Ionospheric Observation, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, https://www.rish.kyoto-u.ac.jp/mu/isdata/ (last access: 6 September 2024), 2024. a
Philipona, R., Mears, C., Fujiwara, M., Jeannet, P., Thorne, P., and Bodeker, G.: Radiosondes Show That after Decades of Cooling, the Lower Stratosphere Is Now Warming, J. Geophys. Res.-Atmos., 123, 12509–12522, https://doi.org/10.1029/2018JD028901, 2018. a
Piggott, W. R. and Rawer, K.: U.R.S.I. Handbook of Ionogram Interpretation and Reduction, no. 23A in Report UAG, https://repository.library.noaa.gov/view/noaa/10404 (last access: 10 September 2024), 1978. a
Pulkkinen, T.: Space Weather: Terrestrial Perspective, Living Rev. Sol. Phys., 4, 1, https://doi.org/10.12942/lrsp-2007-1, 2007. a
Ratcliffe, J.: The formation of the ionospheric layers F-1 and F-2, J. of Atmos. Terr. Phy., 8, 260–269, https://doi.org/10.1016/0021-9169(56)90131-3, 1956. a
Rishbeth, H.: Basic Physics of the Ionosphere: A Tutorial Review, Journal of the Institute of Electronic and Radio Engineers, 58, S207–S223, https://doi.org/10.1049/jiere.1988.0060, 1988. a
Rishbeth, H.: Chances and Changes: The Detection of Long-term Trends in the Ionosphere, EOS, 80, 590–593, https://doi.org/10.1029/99EO00401, 1999. a, b
Rishbeth, H. and Clilverd, M.: Long-Term Change in the Upper Atmosphere, Astron. Geophys., 40, 3.26–3.28, https://doi.org/10.1093/astrog/40.3.3.26, 1999. a
Rishbeth, H., Gordon, R., Rees, D., and Fuller-Rowell, T. J.: Modelling of Thermospheric Composition Changes Caused by a Severe Magnetic Storm, Planet. Space Sci., 33, 1283–1301, https://doi.org/10.1016/0032-0633(85)90007-8, 1985. a
Rishbeth, H., Jenkins, B., and Moffett, R. J.: The F-layer at sunrise, Ann. Geophys., 13, 367–374, https://doi.org/10.1007/s00585-995-0367-6, 1995. a
Santer, B. D., Po-Chedley, S., Zhao, L., Zou, C.-Z., Fu, Q., Solomon, S., Thompson, D. W. J., Mears, C., and Taylor, K. E.: Exceptional Stratospheric Contribution to Human Fingerprints on Atmospheric Temperature, P. Natl. Acad. Sci. USA, 120, e2300758120, https://doi.org/10.1073/pnas.2300758120, 2023. a
Sato, T., Ito, A., Oliver, W. L., Fukao, S., Tsuda, T., Kato, S., and Kimura, I.: Ionospheric Incoherent Scatter Measurements with the Middle and Upper Atmospherer Radar: Techniques and Capability, Radio Sci., 24, 85–98, 1989. a
Schwenn, R.: Space Weather: The Solar Perspective, Living Rev. Sol. Phys., 3, 2, https://doi.org/10.12942/lrsp-2006-2, 2006. a
Scott, C. J.: Matlab code used to analyse data and produce figures used in this paper, Zenodo [code], https://doi.org/10.5281/zenodo.12799715, 2024. a
Scott, C. J. and Stamper, R.: Global variation in the long-term seasonal changes observed in ionospheric F region data, Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, 2015. a, b, c
Scott, C. J., Stamper, R., and Rishbeth, H.: Long-term changes in thermospheric composition inferred from a spectral analysis of ionospheric F-region data, Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, 2014. a, b, c, d
Scott, C. J., Jones, S., and Barnard, L. A.: Inferring thermospheric composition from ionogram profiles: a calibration with the TIMED spacecraft, Ann. Geophys., 39, 309–319, https://doi.org/10.5194/angeo-39-309-2021, 2021. a
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019. a, b
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T.: International Geomagnetic Reference Field: The 12th Generation, Earth Planets Space, 67, 79, https://doi.org/10.1186/s40623-015-0228-9, 2015. a
Titheridge, J.: Winds in the ionosphere—A review, J. Atmos. Terr. Phys., 57, 1681–1714, https://doi.org/10.1016/0021-9169(95)00091-F, 1995. a
Ulich, T., Clilverd, M. A., and Rishbeth, H.: Determining Long-Term Change in the Ionosphere, EOS, 84, 581–585, 2003. a
Wild, M.: Ionosonde data retrieval, UK Solar System Data Centre, Rutherford Appleton Laboratory, 2021 Chilton, UK, https://www.ukssdc.ac.uk/wdcc1/ionosondes/secure/iono_data.shtml (last access: 6 September 2024), 2021. a
Wright, J. W. and Conkright, R. O.: Prospects for an Ionospheric Index of Neutral Thermospheric Composition, with Space-Weather Applications, J. Geophys. Res.-Space, 106, 21063–21075, https://doi.org/10.1029/2000JA000215, 2001. a, b
Xu, Z.-W., Wu, J., Igarashi, K., Kato, H., and Wu, Z.-S.: Long-Term Ionospheric Trends Based on Ground-Based Ionosonde Observations at Kokubunji, Japan, J. Geophys. Res., 109, A09307, https://doi.org/10.1029/2004JA010572, 2004. a, b, c, d
Zuzic, M., Scherliess, L., and Prolss, G. W.: Latitudinal Structure of Thermospheric Composition Perturbations, J. Atmos. Sol.-Terr. Phy., 59, 711–724, https://doi.org/10.1016/S1364-6826(96)00098-3, 1997. a
Editor-in-chief
The topic of long-term changes and trends in the upper atmosphere, since Roble and Dickinson's seminal 1989 paper, remains relevant and current with ongoing controversies. Some of these issues have been resolved over time, while others have become even more controversial. This paper makes a significant contribution to this important topic. The authors have demonstrated that at least one of the widely used established empirical formulae for the ionospheric peak height, hmF2, introduces diurnal, seasonal, and long-term biases into hmF2 estimates. These biases are of similar, if not greater, magnitude than those expected from the long-term cooling resulting from increased greenhouse gases concentration.
The topic of long-term changes and trends in the upper atmosphere, since Roble and Dickinson's...
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the...