Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-29-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-29-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of polar mesospheric summer echoes resembling kilometer-scale varicose-mode flows
Leibniz Institute of Atmospheric Physics, Schlossstraße 6, 18225 Kühlungsborn, Germany
Jorge L. Chau
Leibniz Institute of Atmospheric Physics, Schlossstraße 6, 18225 Kühlungsborn, Germany
Ralph Latteck
Leibniz Institute of Atmospheric Physics, Schlossstraße 6, 18225 Kühlungsborn, Germany
Toralf Renkwitz
Leibniz Institute of Atmospheric Physics, Schlossstraße 6, 18225 Kühlungsborn, Germany
Marius Zecha
Leibniz Institute of Atmospheric Physics, Schlossstraße 6, 18225 Kühlungsborn, Germany
Related authors
No articles found.
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323, https://doi.org/10.5194/egusphere-2025-2323, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The phenomena of meteors occurs at altitudes of 60–120 km and can be used to measure the neutral atmosphere. We use a large high power radar system in Norway (MAARSY) to determine changes to the atmospheric density between the years of 2016–2023 at altitudes of 85–115 km. The same day-of-year is compared, minimizing changes to the measurements due to factors other than the atmosphere. This presents a novel method by which to obtain atmospheric neutral density variations.
J. Federico Conte, Jorge L. Chau, Toralf Renkwitz, Ralph Latteck, Masaki Tsutsumi, Christoph Jacobi, Njål Gulbrandsen, and Satonori Nozawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1996, https://doi.org/10.5194/egusphere-2025-1996, 2025
Short summary
Short summary
Analysis of 10 years of continuous measurements provided MMARIA/SIMONe Norway and MMARIA/SIMONe Germany reveals that the divergent and vortical motions in the mesosphere and lower thermosphere exchange the dominant role depending on the height and the time of the year. At summer mesopause altitudes over middle latitudes, the horizontal divergence and the relative vorticity contribute approximately the same, indicating an energetic balance between mesoscale divergent and vortical motions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Ralph Latteck and Damian J. Murphy
Ann. Geophys., 42, 55–68, https://doi.org/10.5194/angeo-42-55-2024, https://doi.org/10.5194/angeo-42-55-2024, 2024
Short summary
Short summary
This paper gives an overview of continuous measurements of polar mesophere summer echoes (PMSE) by VHF radars at Andøya (69° N) and Davis (69° S). PMSE signal strengths are of the same order of magnitude; significantly fewer PMSE were observed in the Southern than the Northern Hemisphere. Compared to Andøya, the PMSE season over Davis starts ~7 d later and ends 9 d earlier; PMSE occur less frequently but with greater seasonal/diurnal occurrence variability, reaching higher peak altitudes.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Toralf Renkwitz, Mani Sivakandan, Juliana Jaen, and Werner Singer
Atmos. Chem. Phys., 23, 10823–10834, https://doi.org/10.5194/acp-23-10823-2023, https://doi.org/10.5194/acp-23-10823-2023, 2023
Short summary
Short summary
The paper focuses on remote sensing of the lowermost part of the ionosphere (D region) between ca. 50 and 90 km altitude, which overlaps widely with the mesosphere. We present a climatology of electron density over northern Norway, covering solar-maximum and solar-minimum conditions (2014–2022). Excluding detected energetic particle precipitation events, we derived a quiet-profile climatology. We also found a spring–fall asymmetry, while a symmetric solar zenith angle dependence was expected.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Ryan Volz, Jorge L. Chau, Philip J. Erickson, Juha P. Vierinen, J. Miguel Urco, and Matthias Clahsen
Atmos. Meas. Tech., 14, 7199–7219, https://doi.org/10.5194/amt-14-7199-2021, https://doi.org/10.5194/amt-14-7199-2021, 2021
Short summary
Short summary
We introduce a new way of estimating winds in the upper atmosphere (about 80 to 100 km in altitude) from the observed Doppler shift of meteor trails using a statistical method called Gaussian process regression. Wind estimates and, critically, the uncertainty of those estimates can be evaluated smoothly (i.e., not gridded) in space and time. The effective resolution is set by provided parameters, which are limited in practice by the number density of the observed meteors.
Fabio Vargas, Jorge L. Chau, Harikrishnan Charuvil Asokan, and Michael Gerding
Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, https://doi.org/10.5194/acp-21-13631-2021, 2021
Short summary
Short summary
We study large- and small-scale gravity wave cases observed in both airglow imagery and meteor radar data obtained during the SIMONe campaign carried out in early November 2018. We calculate the intrinsic features of several waves and estimate their impact in the mesosphere and lower thermosphere region via transferring energy and momentum to the atmosphere. We also associate cases of large-scale waves with secondary wave generation in the stratosphere.
Johann Stamm, Juha Vierinen, Juan M. Urco, Björn Gustavsson, and Jorge L. Chau
Ann. Geophys., 39, 119–134, https://doi.org/10.5194/angeo-39-119-2021, https://doi.org/10.5194/angeo-39-119-2021, 2021
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Cited articles
Chau, J. L., McKay, D., Vierinen, J. P., La Hoz, C., Ulich, T., Lehtinen, M., and Latteck, R.: Multi-static spatial and angular studies of polar mesospheric summer echoes combining MAARSY and KAIRA, Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, 2018. a
Chau, J. L.: ChauGRL2021, Leibniz Institute of Atmospheric Physics at the University of Rostock [data set], https://doi.org/10.22000/396, 2021. a
Chau, J. L., Marino, R., Feraco, F., Urco, J. M., Baumgarten, G., Lübken, F., Hocking, W. K., Schult, C., Renkwitz, T., and Latteck, R.: Radar Observation of Extreme Vertical Drafts in the Polar Summer Mesosphere, Geophys. Res. Lett., 48, e2021GL094918, https://doi.org/10.1029/2021GL094918, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m
Dong, W., Fritts, D. C., Thomas, G. E., and Lund, T. S.: Modeling Responses of Polar Mesospheric Clouds to Gravity Wave and Instability Dynamics and Induced Large-Scale Motions, J. Geophys. Res.-Atmos., 126, e2021JD034643, https://doi.org/10.1029/2021JD034643, 2021. a, b
Farley, D. T.: On-line data processing techniques for MST radars, Radio Sci., 20, 1177–1184, https://doi.org/10.1029/RS020i006p01177, 1985. a
Feraco, F., Marino, R., Pumir, A., Primavera, L., Mininni, P. D., Pouquet, A., and Rosenberg, D.: Vertical drafts and mixing in stratified turbulence: Sharp transition with Froude number, Europhys. Lett., 123, 44002, https://doi.org/10.1209/0295-5075/123/44002, 2018. a, b
Fritts, D. C., Kaifler, N., Kaifler, B., Geach, C., Kjellstrand, C. B., Williams, B. P., Eckermann, S. D., Miller, A. D., Rapp, M., Jones, G., Limon, M., Reimuller, J., and Wang, L.: Mesospheric Bore Evolution and Instability Dynamics Observed in PMC Turbo Imaging and Rayleigh Lidar Profiling Over Northeastern Canada on 13 July 2018, J. Geophys. Res.-Atmos., 125, e2019JD032037, https://doi.org/10.1029/2019JD032037, 2020. a, b, c
Garcia, R. R. and Solomon, S.: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res.-Atmos., 90, 3850–3868, https://doi.org/10.1029/JD090ID02P03850, 1985. a
Gudadze, N., Stober, G., and Chau, J. L.: Can VHF radars at polar latitudes measure mean vertical winds in the presence of PMSE?, Atmos. Chem. Phys., 19, 4485–4497, https://doi.org/10.5194/acp-19-4485-2019, 2019. a, b, c
Hartisch, J., Chau, J., Latteck, R., Renkwitz, T., and Zecha, M.: HartischAG2024, Leibniz Institute of Atmospheric Physics at the University of Rostock [data set], https://doi.org/10.22000/1688, 2024. a
Hoffmann, P., Singer, W., and Bremer, J.: Mean seasonal and diurnal variations of PMSE and winds from 4 years of radar observations at ALOMAR, Geophys. Res. Lett., 26, 1525–1528, https://doi.org/10.1029/1999GL900279, 1999. a
Hoffmann, P., Singer, W., and Keuer, D.: Variability of the mesospheric wind field at middle and Arctic latitudes in winter and its relation to stratospheric circulation disturbances, J. Atmos. Sol.-Terr. Phy., 64, 1229–1240, https://doi.org/10.1016/S1364-6826(02)00071-8, 2002. a
Hoppe, U.-P. and Fritts, D. C.: On the downward bias in vertical velocity measurements by VHF radars, Geophys. Res. Lett., 22, 619–622, https://doi.org/10.1029/95GL00165, 1995. a, b
Hozumi, Y., Saito, A., Sakanoi, T., Yamazaki, A., Hosokawa, K., and Nakamura, T.: Geographical and Seasonal Variability of Mesospheric Bores Observed from the International Space Station, J. Geophys. Res.-Space, 124, 3775–3785, https://doi.org/10.1029/2019JA026635, 2019. a, b, c
Jaen, J., Renkwitz, T., Chau, J. L., He, M., Hoffmann, P., Yamazaki, Y., Jacobi, C., Tsutsumi, M., Matthias, V., and Hall, C.: Long-term studies of mesosphere and lower-thermosphere summer length definitions based on mean zonal wind features observed for more than one solar cycle at middle and high latitudes in the Northern Hemisphere, Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, 2022. a
Koch, S. E., Flamat, C., Wilson, J. W., Gentry, B. M., and Jamison, B. D.: An Atmospheric Soliton Observed with Doppler Radar, Differential Absorption Lidar, and a Molecular Doppler Lidar, J. Atmos. Ocean. Tech., 25, 1267–1287, https://doi.org/10.1175/2007JTECHA951.1, 2008. a
Latteck, R. and Bremer, J.: Long-term variations of polar mesospheric summer echoes observed at Andøya (69∘ N), J. Atmos. Sol.-Terr. Phy., 163, 31–37, https://doi.org/10.1016/J.JASTP.2017.07.005, 2017. a, b
Latteck, R., Singer, W., Rapp, M., Vandepeer, B., Renkwitz, T., Zecha, M., and Stober, G.: MAARSY: The new MST radar on AndyaSystem description and first results, Radio Sci., 47, RS1006, https://doi.org/10.1029/2011RS004775, 2012. a
Latteck, R., Renkwitz, T., and Chau, J. L.: Two decades of long-term observations of polar mesospheric echoes at 69∘ N, J. Atmos. Sol.-Terr. Phy., 216, 105576, https://doi.org/10.1016/J.JASTP.2021.105576, 2021. a, b, c
Lehmann, R.: 3σ-Rule for Outlier Detection from the Viewpoint of Geodetic Adjustment, J. Surv. Eng., 139, 157–165, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000112, 2013. a
Li, Q., Rapp, M., Stober, G., and Latteck, R.: High-resolution vertical velocities and their power spectrum observed with the MAARSY radar – Part 1: frequency spectrum, Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, 2018. a
Lighthill, J.: Waves in Fluids, J. Fluid Mech., 90, 605–607, https://doi.org/10.1017/S0022112079212421, 1979. a, b
Lübken, F. J., Jarvis, M. J., and Jones, G. O. L.: First in situ temperature measurements at the Antarctic summer mesopause, Geophys. Res. Lett., 26, 3581–3584, https://doi.org/10.1029/1999GL010719, 1999. a
Ramachandran, K., Sivakandan, M., Chau, J. L., Urco, J. M., Gerding, M., Grundmann, S., and Smith, S. M.: Investigation of a Dissipating Mesospheric Bore Using Airglow Imager and Direct Numerical Simulation, J. Geophys. Res.-Space, 128, e2022JA031114, https://doi.org/10.1029/2022JA031114, 2023. a, b
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004. a, b
She, C. Y., Li, T., Williams, B. P., Yuan, T., and Picard, R. H.: Concurrent OH imager and sodium temperature/wind lidar observation of a mesopause region undular bore event over Fort Collins/Platteville, Colorado, J. Geophys. Res.-Atmos., 109, 1–8, https://doi.org/10.1029/2004JD004742, 2004. a, b, c
Smith, S. M., Stober, G., Jacobi, C., Chau, J. L., Gerding, M., Mlynczak, M. G., Russell, J. M., Baumgardner, J. L., Mendillo, M., Lazzarin, M., and Umbriaco, G.: Characterization of a Double Mesospheric Bore Over Europe, J. Geophys. Res.-Space, 122, 9738–9750, https://doi.org/10.1002/2017JA024225, 2017. a
Sommer, S. and Chau, J. L.: Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY, Ann. Geophys., 34, 1231–1241, https://doi.org/10.5194/angeo-34-1231-2016, 2016. a
Taylor, M. J., Turnbull, D. N., and Lowe, R. P.: Spectrometric and imaging measurements of a spectacular gravity wave event observed during the ALOHA-93 Campaign, Geophys. Res. Lett., 22, 2849–2852, https://doi.org/10.1029/95GL02948, 1995. a, b, c
Urco, J. M., Chau, J. L., Weber, T., and Latteck, R.: Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY, Atmos. Meas. Tech., 12, 955–969, https://doi.org/10.5194/amt-12-955-2019, 2019. a
Woodman, R. F. and Guillen, A.: Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere, J. Atmos. Sci., 31, 493–505, https://doi.org/10.1175/1520-0469(1974)031<0493:ROOWAT>2.0.CO;2, 1974. a
Short summary
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway. They found peculiar events with strong upward and downward air movements, happening frequently (up to 2.5 % per month) from 2015 to 2021. Over 700 such events were noted, lasting around 20 min and expanding the studied layer. A total of 17 % of these events had extreme vertical speeds, showing their unique nature.
Scientists are studying the mesosphere and lower thermosphere using radar in northern Norway....