Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-213-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-213-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of meteoric smoke particles on the incoherent scatter measured with EISCAT VHF
Tinna L. Gunnarsdottir
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Wuhu Feng
National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom
Devin R. Huyghebaert
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Ingemar Haeggstroem
EISCAT Scientific Association, Kiruna, Sweden
Yasunobu Ogawa
National Institute of Polar Research, Tokyo, Japan
Norihito Saito
RIKEN Center for Advanced Photonics, Riken, Japan
Satonori Nozawa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Takuya D. Kawahara
Faculty of Engineering, Shinshu university, Matsumoto, Japan
Related authors
Tinna L. Gunnarsdottir, Arne Poggenpohl, Ingrid Mann, Alireza Mahmoudian, Peter Dalin, Ingemar Haeggstroem, and Michael Rietveld
Ann. Geophys., 41, 93–114, https://doi.org/10.5194/angeo-41-93-2023, https://doi.org/10.5194/angeo-41-93-2023, 2023
Short summary
Short summary
Temperatures at 85 km around Earth's poles in summer can be so cold that small ice particles form. These can become charged, and, combined with turbulence at these altitudes, they can influence the many electrons present. This can cause large radar echoes called polar mesospheric summer echoes. We use radio waves to heat these echoes on and off when the sun is close to or below the horizon. This allows us to gain some insight into these ice particles and how the sun influences the echoes.
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024, https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
Short summary
DCE (1,2-dichloroethane) is an industrial chemical used to produce PVC (polyvinyl chloride). We analysed DCE production data to estimate global DCE emissions (2002–2020). The emissions were included in an atmospheric model and evaluated by comparing simulated DCE to DCE measurements in the troposphere. We show that DCE contributes ozone-depleting Cl to the stratosphere and that this has increased with increasing DCE emissions. DCE’s impact on stratospheric O3 is currently small but non-zero.
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277, https://doi.org/10.5194/egusphere-2024-3277, 2024
Short summary
Short summary
Our research explored the "shock aurora," caused by the impact of solar wind particles on Earth's magnetic field. On February 26, 2023, we observed this rare event on the nightside, where such observations are difficult. Ground-based cameras revealed new structural features, including undulating and jumping patterns. These results provide fresh insights into the complex interactions between the solar wind and Earth's magnetosphere, enhancing our understanding of space weather effects.
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
Ann. Geophys., 42, 431–453, https://doi.org/10.5194/angeo-42-431-2024, https://doi.org/10.5194/angeo-42-431-2024, 2024
Short summary
Short summary
We investigated the relationship between polar mesospheric summer echo (PMSE) layers and the solar cycle. Our results indicate that the average altitude of PMSEs, the echo power in the PMSEs and the thickness of the layers are, on average, higher during the solar maximum than during the solar minimum. We infer that higher electron densities at ionospheric altitudes might be necessary to observe multilayered PMSEs. We observe that the thickness decreases as the number of multilayers increases.
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024, https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Short summary
The leaks from the Nord Stream gas pipelines in September 2022 released a large amount of methane (CH4) into the atmosphere. We provide observational data from a satellite instrument that shows a large CH4 plume over the North Sea off the coast of Scandinavia. We use this together with atmospheric models to quantify the CH4 leaked into the atmosphere from the pipelines. We find that 219–427 Gg CH4 was emitted, making this the largest individual fossil-fuel-related CH4 leak on record.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Wuhu Feng, and Martyn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2736, https://doi.org/10.5194/egusphere-2024-2736, 2024
Short summary
Short summary
Globally, lockdowns were implemented to limit the spread of COVID-19, leading to a decrease in emissions of key air pollutants. Here, we use novel satellite data and a chemistry model to investigate the impact of the pandemic on tropospheric ozone (O3), a key pollutant, in 2020. Overall, we found substantial decreases of up to 20 %, 2/3s of which came from emission reductions while 1/3 was due to a decrease in the stratospheric ozone flux into the troposphere.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
Yang Li, Wuhu Feng, Xin Zhou, Yajuan Li, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024, https://doi.org/10.5194/acp-24-8277-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP), the highest and largest plateau, experiences strong surface solar UV radiation, whose excess can cause harmful influences on local biota. Hence, it is critical to study TP ozone. We find ENSO, the strongest interannual phenomenon, tends to induce tropospheric temperature change and thus modulate tropopause variability, which in turn favours ozone change over the TP. Our results have implications for a better understanding of the interannual variability of TP ozone.
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, and Alexandru Rap
EGUsphere, https://doi.org/10.5194/egusphere-2024-1573, https://doi.org/10.5194/egusphere-2024-1573, 2024
Short summary
Short summary
Contrail cirrus is the largest, but also most uncertain contribution of aviation to global warming. We evaluate for the first time the impact of the host climate model on contrail cirrus properties. Substantial differences exist between contrail cirrus formation, persistence, and radiative effects in the host climate models. Reliable contrail cirrus simulations require advanced representation of cloud optical properties and microphysics, which should be better constrained by observations.
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Yanlin Li, Tai-Yin Huang, Julio Urbina, Fabio Vargas, and Wuhu Feng
Ann. Geophys., 42, 285–299, https://doi.org/10.5194/angeo-42-285-2024, https://doi.org/10.5194/angeo-42-285-2024, 2024
Short summary
Short summary
This work combines lidar observation data and a new numerical sodium (Na) chemistry model, using data assimilation to study the relation between the mesospheric Na layer and the meteoric input function. Simulation captures the seasonal variability in the Na number density compared with lidar observations over the Colorado State University (CSU) lidar. The estimated global ablated meteoroid material inputs from Andes Lidar Observatory and CSU observations are 83 t d-1 and 53 t d-1, respectively.
Samuel Kočiščák, Andreas Kvammen, Ingrid Mann, Nicole Meyer-Vernet, David Píša, Jan Souček, Audun Theodorsen, Jakub Vaverka, and Arnaud Zaslavsky
Ann. Geophys., 42, 191–212, https://doi.org/10.5194/angeo-42-191-2024, https://doi.org/10.5194/angeo-42-191-2024, 2024
Short summary
Short summary
In situ observations are crucial for understanding interplanetary dust, yet not every spacecraft has a dedicated dust detector. Dust encounters happen at great speeds, leading to high energy density at impact, which leads to ionization and charge release, which is detected with electrical antennas. Our work looks at how the transient charge plume interacts with Solar Orbiter spacecraft. Our findings are relevant for the design of future experiments and the understanding of present data.
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024, https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Short summary
We present via simulation how useful monochromatic images taken by a multi-point imager network are for auroral research in the EISCAT_3D project. We apply the generalized-aurora computed tomography (G-ACT) to modeled multiple auroral images and ionospheric electron density data. It is demonstrated that G-ACT provides better reconstruction results than the normal ACT and can interpolate ionospheric electron density at a much higher spatial resolution than observed by the EISCAT_3D radar.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Stefan Noll, John M. C. Plane, Wuhu Feng, Konstantinos S. Kalogerakis, Wolfgang Kausch, Carsten Schmidt, Michael Bittner, and Stefan Kimeswenger
Atmos. Chem. Phys., 24, 1143–1176, https://doi.org/10.5194/acp-24-1143-2024, https://doi.org/10.5194/acp-24-1143-2024, 2024
Short summary
Short summary
The Earth's nighttime radiation in the range from the near-UV to the near-IR mainly originates between 75 and 105 km and consists of lines of different species, which are important indicators of the chemistry and dynamics at these altitudes. Based on astronomical spectra, we have characterised the structure and variability of a pseudo-continuum of a high number of faint lines and discovered a new emission process in the near-IR. By means of simulations, we identified HO2 as the likely emitter.
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, and Richard Rigby
Atmos. Chem. Phys., 23, 14933–14947, https://doi.org/10.5194/acp-23-14933-2023, https://doi.org/10.5194/acp-23-14933-2023, 2023
Short summary
Short summary
Ozone is a potent air pollutant, and we present the first study to investigate long-term changes in lower tropospheric column ozone (LTCO3) from space. We have constructed a merged LTCO3 dataset from GOME-1, SCIAMACHY and OMI between 1996 and 2017. Comparing LTCO3 between the 1996–2000 and 2013–2017 5-year averages, we find significant positive increases in the tropics/sub-tropics, while in the northern mid-latitudes, we find small-scale differences.
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023, https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
Short summary
We use computed tomography to reconstruct the three-dimensional distributions of the Hall and Pedersen conductivities of pulsating auroras, a key research target for understanding the magnetosphere–ionosphere coupling process. It is suggested that the high-energy electron precipitation associated with pulsating auroras may have a greater impact on the closure of field-aligned currents in the ionosphere than has been previously reported.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023, https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary
Short summary
For the first time a regularized multivariate regression model is used to estimate stratospheric ozone trends. Regularized regression avoids the over-fitting issue due to correlation among explanatory variables. We demonstrate that there are considerable differences in satellite-based and chemical-model-based ozone trends, highlighting large uncertainties in our understanding about ozone variability. We argue that caution is needed when interpreting results with different methods and datasets.
Michael P. Cartwright, Richard J. Pope, Jeremy J. Harrison, Martyn P. Chipperfield, Chris Wilson, Wuhu Feng, David P. Moore, and Parvadha Suntharalingam
Atmos. Chem. Phys., 23, 10035–10056, https://doi.org/10.5194/acp-23-10035-2023, https://doi.org/10.5194/acp-23-10035-2023, 2023
Short summary
Short summary
A 3-D chemical transport model, TOMCAT, is used to simulate global atmospheric carbonyl sulfide (OCS) distribution. Modelled OCS compares well with satellite observations of OCS from limb-sounding satellite observations. Model simulations also compare adequately with surface and atmospheric observations and suitably capture the seasonality of OCS and background concentrations.
Nobuo Matuura, Ryoichi Fujii, and Satonori Nozawa
Hist. Geo Space. Sci., 14, 61–69, https://doi.org/10.5194/hgss-14-61-2023, https://doi.org/10.5194/hgss-14-61-2023, 2023
Short summary
Short summary
This paper describes the details of the Japan's participation in the EISCAT Radar Scientific Association as the 7th associate country approved in 1995, emphasizing strong collaboration with Norwegian scientists and the EISCAT Radar Scientific Association towards the realization of the Svalbard second antenna. Also described is a brief summary of Japanese EISCAT-related scientific achievement, comprehensive scientific collaborations so far between Japan and Europe, and hopes for EISCAT_3D.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Tinna L. Gunnarsdottir, Arne Poggenpohl, Ingrid Mann, Alireza Mahmoudian, Peter Dalin, Ingemar Haeggstroem, and Michael Rietveld
Ann. Geophys., 41, 93–114, https://doi.org/10.5194/angeo-41-93-2023, https://doi.org/10.5194/angeo-41-93-2023, 2023
Short summary
Short summary
Temperatures at 85 km around Earth's poles in summer can be so cold that small ice particles form. These can become charged, and, combined with turbulence at these altitudes, they can influence the many electrons present. This can cause large radar echoes called polar mesospheric summer echoes. We use radio waves to heat these echoes on and off when the sun is close to or below the horizon. This allows us to gain some insight into these ice particles and how the sun influences the echoes.
Andreas Kvammen, Kristoffer Wickstrøm, Samuel Kociscak, Jakub Vaverka, Libor Nouzak, Arnaud Zaslavsky, Kristina Rackovic Babic, Amalie Gjelsvik, David Pisa, Jan Soucek, and Ingrid Mann
Ann. Geophys., 41, 69–86, https://doi.org/10.5194/angeo-41-69-2023, https://doi.org/10.5194/angeo-41-69-2023, 2023
Short summary
Short summary
Collisional fragmentation of asteroids, comets and meteoroids is the main source of dust in the solar system. The dust distribution is however uncharted and the role of dust in the solar system is largely unknown. At present, the interplanetary medium is explored by the Solar Orbiter spacecraft. We present a novel method, based on artificial intelligence, that can be used for detecting dust impacts in Solar Orbiter observations with high accuracy, advancing the study of dust in the solar system.
Yuan Xia, Jing Jiao, Satonori Nozawa, Xuewu Cheng, Jihong Wang, Chunhua Shi, Lifang Du, Yajuan Li, Haoran Zheng, Faquan Li, and Guotao Yang
Atmos. Chem. Phys., 22, 13817–13831, https://doi.org/10.5194/acp-22-13817-2022, https://doi.org/10.5194/acp-22-13817-2022, 2022
Short summary
Short summary
The layer of sodium atoms is generally located above 80 km. This study reports the significant enhancements of the sodium layer below 75 km where sodium atoms are short-lived. The neutral chemical reactions were suggested as making a critical contribution. The reported results provide clear observational evidence for the role of planetary waves in the variation of metal layers, and have implications for the response of the metal layers to perturbations in the lower atmosphere.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022, https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
Short summary
Chemical transport models forced with (re)analysis meteorological fields are ideally suited for interpreting the influence of important physical processes on the ozone variability. We use TOMCAT forced by ECMWF ERA-Interim and ERA5 reanalysis data sets to investigate the effects of reanalysis forcing fields on ozone changes. Our results show that models forced by ERA5 reanalyses may not yet be capable of reproducing observed changes in stratospheric ozone, particularly in the lower stratosphere.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Barry G. Latter, Diane S. Knappett, Dwayne E. Heard, Lucy J. Ventress, Richard Siddans, Wuhu Feng, and Martyn P. Chipperfield
Atmos. Chem. Phys., 22, 10467–10488, https://doi.org/10.5194/acp-22-10467-2022, https://doi.org/10.5194/acp-22-10467-2022, 2022
Short summary
Short summary
We present a new method to derive global information of the hydroxyl radical (OH), an important atmospheric oxidant. OH controls the lifetime of trace gases important to air quality and climate. We use satellite observations of ozone, carbon monoxide, methane and water vapour in a simple expression to derive OH around 3–4 km altitude. The derived OH compares well to model and aircraft OH data. We then apply the method to 10 years of satellite data to study the inter-annual variability of OH.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Kyoko K. Tanaka, Ingrid Mann, and Yuki Kimura
Atmos. Chem. Phys., 22, 5639–5650, https://doi.org/10.5194/acp-22-5639-2022, https://doi.org/10.5194/acp-22-5639-2022, 2022
Short summary
Short summary
We have investigated the nucleation process of noctilucent clouds observed in the mesosphere using a theoretical approach, where we adopt a more accurate model called the semi-phenomenological model for the nucleation process. We obtained an important result that rejects one of the two dominant nucleation mechanisms that have been proposed. Our results show it is extremely difficult for homogeneous nucleation of water to occur in the mesosphere, while heterogeneous nucleation occurs effectively.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Fasil Tesema, Noora Partamies, Daniel K. Whiter, and Yasunobu Ogawa
Ann. Geophys., 40, 1–10, https://doi.org/10.5194/angeo-40-1-2022, https://doi.org/10.5194/angeo-40-1-2022, 2022
Short summary
Short summary
In this study, we present the comparison between an auroral model and EISCAT radar electron densities during pulsating aurorae. We test whether an overpassing satellite measurement of the average energy spectrum is a reasonable estimate for pulsating aurora electron precipitation. When patchy pulsating aurora is dominant in the morning sector, the overpass-averaged spectrum is found to be a reasonable estimate – but not when there is a mix of pulsating aurora types in the post-midnight sector.
Margaretha Myrvang, Carsten Baumann, and Ingrid Mann
Ann. Geophys., 39, 1055–1068, https://doi.org/10.5194/angeo-39-1055-2021, https://doi.org/10.5194/angeo-39-1055-2021, 2021
Short summary
Short summary
Our model calculations indicate that meteoric smoke particles (MSPs) influence both the magnitude and shape of the electron temperature during artificial heating. Others have found that current theoretical models most likely overestimate heating in the D-region compared to observations. In a future study, we will compare our results to observations of the electron temperature during heating to investigate if the presence of MSPs can explain the discrepancy between model and observations.
Sandip S. Dhomse, Carlo Arosio, Wuhu Feng, Alexei Rozanov, Mark Weber, and Martyn P. Chipperfield
Earth Syst. Sci. Data, 13, 5711–5729, https://doi.org/10.5194/essd-13-5711-2021, https://doi.org/10.5194/essd-13-5711-2021, 2021
Short summary
Short summary
High-quality long-term ozone profile data sets are key to estimating short- and long-term ozone variability. Almost all the satellite (and chemical model) data sets show some kind of bias with respect to each other. This is because of differences in measurement methodologies as well as simplified processes in the models. We use satellite data sets and chemical model output to generate 42 years of ozone profile data sets using a random-forest machine-learning algorithm that is named ML-TOMCAT.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Tarjei Antonsen, Ingrid Mann, Jakub Vaverka, Libor Nouzak, and Åshild Fredriksen
Ann. Geophys., 39, 533–548, https://doi.org/10.5194/angeo-39-533-2021, https://doi.org/10.5194/angeo-39-533-2021, 2021
Short summary
Short summary
This paper discusses the charge generation for impacts of nano- to micro-scale dust on metal surfaces at speeds below a few kilometres per second. By introducing a model of capacitive coupling between the dust and the impact surface, we find that at such low speeds, the charge can be dominated by contact charging as opposed to plasma generation.
Joshua Baptiste, Connor Williamson, John Fox, Anthony J. Stace, Muhammad Hassan, Stefanie Braun, Benjamin Stamm, Ingrid Mann, and Elena Besley
Atmos. Chem. Phys., 21, 8735–8745, https://doi.org/10.5194/acp-21-8735-2021, https://doi.org/10.5194/acp-21-8735-2021, 2021
Short summary
Short summary
Agglomeration of ice and dust particles in the mesosphere are studied, using classical electrostatic approaches which are extended to capture the induced polarisation of surface charge. The instances of strong attraction between particles of the same sign of charge are predicted, which take place at small separation distances and also lead to the formation of stable aggregates.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Viswanathan Lakshmi Narayanan, Satonori Nozawa, Shin-Ichiro Oyama, Ingrid Mann, Kazuo Shiokawa, Yuichi Otsuka, Norihito Saito, Satoshi Wada, Takuya D. Kawahara, and Toru Takahashi
Atmos. Chem. Phys., 21, 2343–2361, https://doi.org/10.5194/acp-21-2343-2021, https://doi.org/10.5194/acp-21-2343-2021, 2021
Short summary
Short summary
In the past, additional sodium peaks occurring above the main sodium layer of the upper mesosphere were discussed. Here, formation of an additional sodium peak below the main sodium layer peak is discussed in detail. The event coincided with passage of multiple mesospheric bores, which are step-like disturbances occurring in the upper mesosphere. Hence, this work highlights the importance of such mesospheric bores in causing significant changes to the minor species concentration in a short time.
Benjamin Birner, Martyn P. Chipperfield, Eric J. Morgan, Britton B. Stephens, Marianna Linz, Wuhu Feng, Chris Wilson, Jonathan D. Bent, Steven C. Wofsy, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Chem. Phys., 20, 12391–12408, https://doi.org/10.5194/acp-20-12391-2020, https://doi.org/10.5194/acp-20-12391-2020, 2020
Short summary
Short summary
With new high-precision observations from nine aircraft campaigns and 3-D chemical transport modeling, we show that the argon-to-nitrogen ratio (Ar / N2) in the lowermost stratosphere provides a useful constraint on the “age of air” (the time elapsed since entry of an air parcel into the stratosphere). Therefore, Ar / N2 in combination with traditional age-of-air indicators, such as CO2 and N2O, could provide new insights into atmospheric mixing and transport.
Carsten Baumann, Margaretha Myrvang, and Ingrid Mann
Ann. Geophys., 38, 919–930, https://doi.org/10.5194/angeo-38-919-2020, https://doi.org/10.5194/angeo-38-919-2020, 2020
Short summary
Short summary
Dust grains exist throughout our solar system. This dust is subject to destruction processes like sublimation and sputtering. Sputtering is the erosion of dust through the impact solar wind and can be very effective near the Sun. We performed calculations to find out how important the sputtering process is compared to the sublimation of dust. Recently launched spacecraft will probe the proximity of the Sun and measure the dust population. Our work will help to understand these measurements.
Henriette Trollvik, Ingrid Mann, Sveinung Olsen, and Yngve Eilertsen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-278, https://doi.org/10.5194/amt-2020-278, 2020
Preprint withdrawn
Short summary
Short summary
We discuss the design of a rocket instrument to collect mesospheric dust consisting of ice with embedded non-volatile meteoric smoke particles. The instrument consists of a collection device and an attached conic funnel. We consider the dust trajectories in the airflow and fragmentation at the funnel. For summer atmospheric conditions at 85 km and assuming that the ice components vaporize we estimate that up to 1014 to 1015 amu of non-volatile dust material can be collected.
Yajuan Li, Martyn P. Chipperfield, Wuhu Feng, Sandip S. Dhomse, Richard J. Pope, Faquan Li, and Dong Guo
Atmos. Chem. Phys., 20, 8627–8639, https://doi.org/10.5194/acp-20-8627-2020, https://doi.org/10.5194/acp-20-8627-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP) exerts important thermal and dynamical effects on atmospheric circulation, climate change as well as the ozone distribution. In this study, we use updated observations and model simulations to investigate the ozone trends and variations over the TP. Wintertime TP ozone variations are largely controlled by tropical to high-latitude transport processes, whereas summertime concentrations are a combined effect of photochemical decay and tropical processes.
Clara Orbe, David A. Plummer, Darryn W. Waugh, Huang Yang, Patrick Jöckel, Douglas E. Kinnison, Beatrice Josse, Virginie Marecal, Makoto Deushi, Nathan Luke Abraham, Alexander T. Archibald, Martyn P. Chipperfield, Sandip Dhomse, Wuhu Feng, and Slimane Bekki
Atmos. Chem. Phys., 20, 3809–3840, https://doi.org/10.5194/acp-20-3809-2020, https://doi.org/10.5194/acp-20-3809-2020, 2020
Short summary
Short summary
Atmospheric composition is strongly influenced by global-scale winds that are not always properly simulated in computer models. A common approach to correct for this bias is to relax or
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
Ingrid Mann, Libor Nouzák, Jakub Vaverka, Tarjei Antonsen, Åshild Fredriksen, Karine Issautier, David Malaspina, Nicole Meyer-Vernet, Jiří Pavlů, Zoltan Sternovsky, Joan Stude, Shengyi Ye, and Arnaud Zaslavsky
Ann. Geophys., 37, 1121–1140, https://doi.org/10.5194/angeo-37-1121-2019, https://doi.org/10.5194/angeo-37-1121-2019, 2019
Short summary
Short summary
This work presents a review of dust measurements from spacecraft Cassini, STEREO, MMS, Cluster, Maven and WIND. We also consider the details of dust impacts and charge generation, and how different antenna signals can be generated. We compare observational data to laboratory experiments and simulations and discuss the consequences for dust observation with the new NASA Parker Solar Probe and ESA Solar Orbiter spacecraft.
Ingo Wohltmann, Ralph Lehmann, Georg A. Gottwald, Karsten Peters, Alain Protat, Valentin Louf, Christopher Williams, Wuhu Feng, and Markus Rex
Geosci. Model Dev., 12, 4387–4407, https://doi.org/10.5194/gmd-12-4387-2019, https://doi.org/10.5194/gmd-12-4387-2019, 2019
Short summary
Short summary
We present a trajectory-based model for simulating the transport of air parcels by convection. Our model extends the approach of existing models by explicitly simulating vertical updraft velocities inside the clouds and the time that an air parcel spends inside the convective event.
Matthew J. Rowlinson, Alexandru Rap, Stephen R. Arnold, Richard J. Pope, Martyn P. Chipperfield, Joe McNorton, Piers Forster, Hamish Gordon, Kirsty J. Pringle, Wuhu Feng, Brian J. Kerridge, Barry L. Latter, and Richard Siddans
Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, https://doi.org/10.5194/acp-19-8669-2019, 2019
Short summary
Short summary
Wildfires and meteorology have a substantial effect on atmospheric concentrations of greenhouse gases such as methane and ozone. During the 1997 El Niño event, unusually large fire emissions indirectly increased global methane through carbon monoxide emission, which decreased the oxidation capacity of the atmosphere. There were also large regional changes to tropospheric ozone concentrations, but contrasting effects of fire and meteorology resulted in a small change to global radiative forcing.
Tao Yuan, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, https://doi.org/10.5194/acp-19-3769-2019, 2019
Short summary
Short summary
The Na layer in the upper atmosphere is very sensitive to solar radiation and varies considerably during sunrise and sunset. In this paper, we use the lidar observations and an advanced model to investigate this process. We found that the variation is mostly due to the changes in several photochemical reactions involving Na compounds, especially NaHCO3. We also reveal that the Fe layer in the same region changes more quickly than the Na layer due to a faster reaction rate of FeOH to sunlight.
Jun Wu, Jian Wu, Michael T. Rietveld, Ingemar Haggstrom, Haisheng Zhao, Tong Xu, and Zhengwen Xu
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-23, https://doi.org/10.5194/angeo-2019-23, 2019
Manuscript not accepted for further review
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Joe McNorton, Chris Wilson, Manuel Gloor, Rob J. Parker, Hartmut Boesch, Wuhu Feng, Ryan Hossaini, and Martyn P. Chipperfield
Atmos. Chem. Phys., 18, 18149–18168, https://doi.org/10.5194/acp-18-18149-2018, https://doi.org/10.5194/acp-18-18149-2018, 2018
Short summary
Short summary
Since 2007 atmospheric methane (CH4) has been unexpectedly increasing following a 6-year hiatus. We have used an atmospheric model to attribute regional sources and global sinks of CH4 using observations for the 2003–2015 period. Model results show the renewed growth is best explained by decreased atmospheric removal, decreased biomass burning emissions, and an increased energy sector (mainly from Africa–Middle East and Southern Asia–Oceania) and wetland emissions (mainly from northern Eurasia).
John M. C. Plane, Wuhu Feng, Juan Carlos Gómez Martín, Michael Gerding, and Shikha Raizada
Atmos. Chem. Phys., 18, 14799–14811, https://doi.org/10.5194/acp-18-14799-2018, https://doi.org/10.5194/acp-18-14799-2018, 2018
Short summary
Short summary
Meteoric ablation creates layers of metal atoms in the atmosphere around 90 km. Although Ca and Na have similar elemental abundances in most minerals found in the solar system, surprisingly the Ca abundance in the atmosphere is less than 1 % that of Na. This study uses a detailed chemistry model of Ca, largely based on laboratory kinetics measurements, in a whole-atmosphere model to show that the depletion is caused by inefficient ablation of Ca and the formation of stable molecular reservoirs.
Tao Li, Chao Ban, Xin Fang, Jing Li, Zhaopeng Wu, Wuhu Feng, John M. C. Plane, Jiangang Xiong, Daniel R. Marsh, Michael J. Mills, and Xiankang Dou
Atmos. Chem. Phys., 18, 11683–11695, https://doi.org/10.5194/acp-18-11683-2018, https://doi.org/10.5194/acp-18-11683-2018, 2018
Short summary
Short summary
A total of 154 nights of observations by the USTC Na temperature and wind lidar (32° N, 117° E) suggest significant seasonal variability in the mesopause. Chemistry plays an important role in Na atom formation. More than half of the observed gravity wave (GW) momentum flux (MF), whose divergence determines the GW forcing, is induced by short-period (10 min–2 h) waves. The anticorrelation between MF and zonal wind (U) suggests strong filtering of short-period GWs by semiannual oscillation U.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Richard J. Pope, Martyn P. Chipperfield, Stephen R. Arnold, Norbert Glatthor, Wuhu Feng, Sandip S. Dhomse, Brian J. Kerridge, Barry G. Latter, and Richard Siddans
Atmos. Chem. Phys., 18, 8389–8408, https://doi.org/10.5194/acp-18-8389-2018, https://doi.org/10.5194/acp-18-8389-2018, 2018
Nickolay Ivchenko, Nicola M. Schlatter, Hanna Dahlgren, Yasunobu Ogawa, Yuka Sato, and Ingemar Häggström
Ann. Geophys., 35, 1143–1149, https://doi.org/10.5194/angeo-35-1143-2017, https://doi.org/10.5194/angeo-35-1143-2017, 2017
Short summary
Short summary
Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. A plasma line gives an accurate measure of the electron density and can be used to estimate electron temperature. The occurrence of plasma line enhancements in the EISCAT Svalbard Radar data was investigated. During summer daytime hours the plasma line is detectable in up to 90 % of the data. In winter time the occurrence is a few percent.
Martin P. Langowski, Christian von Savigny, John P. Burrows, Didier Fussen, Erin C. M. Dawkins, Wuhu Feng, John M. C. Plane, and Daniel R. Marsh
Atmos. Meas. Tech., 10, 2989–3006, https://doi.org/10.5194/amt-10-2989-2017, https://doi.org/10.5194/amt-10-2989-2017, 2017
Short summary
Short summary
Meteoric metals form metal layers in the upper atmosphere anandplay a role in the formation of middle-atmospheric clouds and aerosols. However, the total metal influx rate is not well known. Global Na datasets from measurements and a model are available, which had not been compared yet on a global scale until this paper. Overall the agreement is good, and many differences between measurements are also found in the model simulations. However, the modeled layer altitude is too low.
Sarah A. Monks, Stephen R. Arnold, Michael J. Hollaway, Richard J. Pope, Chris Wilson, Wuhu Feng, Kathryn M. Emmerson, Brian J. Kerridge, Barry L. Latter, Georgina M. Miles, Richard Siddans, and Martyn P. Chipperfield
Geosci. Model Dev., 10, 3025–3057, https://doi.org/10.5194/gmd-10-3025-2017, https://doi.org/10.5194/gmd-10-3025-2017, 2017
Short summary
Short summary
The TOMCAT chemical transport model has been updated with the chemical degradation of ethene, propene, toluene, butane and monoterpenes. The tropospheric chemical mechanism is documented and the model is evaluated against surface, balloon, aircraft and satellite data. The model is generally able to capture the main spatial and seasonal features of carbon monoxide, ozone, volatile organic compounds and reactive nitrogen. However,
some model biases are found that require further investigation.
Wenshou Tian, Yuanpu Li, Fei Xie, Jiankai Zhang, Martyn P. Chipperfield, Wuhu Feng, Yongyun Hu, Sen Zhao, Xin Zhou, Yun Yang, and Xuan Ma
Atmos. Chem. Phys., 17, 6705–6722, https://doi.org/10.5194/acp-17-6705-2017, https://doi.org/10.5194/acp-17-6705-2017, 2017
Short summary
Short summary
Although the principal mechanisms responsible for the formation of the Antarctic ozone hole are well understood, the factors or processes that generate interannual variations in ozone levels in the southern high-latitude stratosphere remain under debate. This study finds that the SST variations across the East Asian marginal seas (5° S–35° N, 100–140° E) could modulate the southern high-latitude stratospheric ozone interannual changes.
Stefanie Unterguggenberger, Stefan Noll, Wuhu Feng, John M. C. Plane, Wolfgang Kausch, Stefan Kimeswenger, Amy Jones, and Sabine Moehler
Atmos. Chem. Phys., 17, 4177–4187, https://doi.org/10.5194/acp-17-4177-2017, https://doi.org/10.5194/acp-17-4177-2017, 2017
Short summary
Short summary
This study focuses on the analysis of astronomical medium-resolution spectra from the VLT in Chile to measure airglow pseudo-continuum emission of FeO in the optical regime. Compared to OH or Na emissions, this emission is difficult to measure. Using 3.5 years of spectroscopic data, we found annual and semi-annual variations of the FeO emission. Furthermore, we used WACCM to determine the quantum yield of the FeO-producing Fe + O3 reaction in the atmosphere, which has not been done before.
Jochen Stutz, Bodo Werner, Max Spolaor, Lisa Scalone, James Festa, Catalina Tsai, Ross Cheung, Santo F. Colosimo, Ugo Tricoli, Rasmus Raecke, Ryan Hossaini, Martyn P. Chipperfield, Wuhu Feng, Ru-Shan Gao, Eric J. Hintsa, James W. Elkins, Fred L. Moore, Bruce Daube, Jasna Pittman, Steven Wofsy, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 1017–1042, https://doi.org/10.5194/amt-10-1017-2017, https://doi.org/10.5194/amt-10-1017-2017, 2017
Short summary
Short summary
A new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument was developed for NASA’s Global Hawk unmanned aerial system during the Airborne Tropical TRopopause EXperiment to study trace gases in the tropical tropopause layer. A new technique that uses in situ and DOAS O3 observations together with radiative transfer calculations allows the retrieval of mixing ratios from the slant column densities of BrO and NO2 at high accuracies of 0.5 ppt and 15 ppt, respectively.
Tamás Kovács, Wuhu Feng, Anna Totterdill, John M. C. Plane, Sandip Dhomse, Juan Carlos Gómez-Martín, Gabriele P. Stiller, Florian J. Haenel, Christopher Smith, Piers M. Forster, Rolando R. García, Daniel R. Marsh, and Martyn P. Chipperfield
Atmos. Chem. Phys., 17, 883–898, https://doi.org/10.5194/acp-17-883-2017, https://doi.org/10.5194/acp-17-883-2017, 2017
Short summary
Short summary
Sulfur hexafluoride (SF6) is a very potent greenhouse gas, which is present in the atmosphere only through its industrial use, for example as an electrical insulator. To estimate accurately the impact of SF6 emissions on climate we need to know how long it persists in the atmosphere before being removed. Previous estimates of the SF6 lifetime indicate a large degree of uncertainty. Here we use a detailed atmospheric model to calculate a current best estimate of the SF6 lifetime.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Wayne K. Hocking, Reynold E. Silber, John M. C. Plane, Wuhu Feng, and Marcial Garbanzo-Salas
Ann. Geophys., 34, 1119–1144, https://doi.org/10.5194/angeo-34-1119-2016, https://doi.org/10.5194/angeo-34-1119-2016, 2016
Short summary
Short summary
Meteoroids entering the atmosphere produce trails of ionized particles which can be detected with radar. The weakest ones are called underdense (the most common), the strongest are called overdense, and intermediate ones are transitional. Meteor radar signatures are used to determine atmospheric parameters like temperature and winds. We present new results which show the effect of ozone on the transitional trail lifetimes, which may eventually allow radar to measure mesospheric ozone.
Richard J. Pope, Nigel A. D. Richards, Martyn P. Chipperfield, David P. Moore, Sarah A. Monks, Stephen R. Arnold, Norbert Glatthor, Michael Kiefer, Tom J. Breider, Jeremy J. Harrison, John J. Remedios, Carsten Warneke, James M. Roberts, Glenn S. Diskin, Lewis G. Huey, Armin Wisthaler, Eric C. Apel, Peter F. Bernath, and Wuhu Feng
Atmos. Chem. Phys., 16, 13541–13559, https://doi.org/10.5194/acp-16-13541-2016, https://doi.org/10.5194/acp-16-13541-2016, 2016
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 1331–1342, https://doi.org/10.5194/angeo-33-1331-2015, https://doi.org/10.5194/angeo-33-1331-2015, 2015
Short summary
Short summary
In a simulation study of the downward current region of the aurora, i.e. where electrons are accelerated upward, double layers are seen to form at low altitude and move upward until they are disrupted at altitudes of ten thousand kilometres or thereabouts. When one double layer is disrupted a new one forms below, and the process repeats itself. The repeated demise and reformation allows ions to flow upward without passing through the double layers that otherwise would have kept them down.
T. Takahashi, S. Nozawa, T. T. Tsuda, Y. Ogawa, N. Saito, T. Hidemori, T. D. Kawahara, C. Hall, H. Fujiwara, N. Matuura, A. Brekke, M. Tsutsumi, S. Wada, T. Kawabata, S. Oyama, and R. Fujii
Ann. Geophys., 33, 941–953, https://doi.org/10.5194/angeo-33-941-2015, https://doi.org/10.5194/angeo-33-941-2015, 2015
T. Ishida, Y. Ogawa, A. Kadokura, K. Hosokawa, and Y. Otsuka
Ann. Geophys., 33, 525–530, https://doi.org/10.5194/angeo-33-525-2015, https://doi.org/10.5194/angeo-33-525-2015, 2015
Short summary
Short summary
We studied the localized plasma density enhancements called blobs, which are often produced in the high-latitude ionosphere by the transportation process of plasma or particle precipitations. This subject is important because such structures affect radio wave propagation and can cause scintillation of GNSS signals in the deformation process. This paper is the first report of direct observations of blob deformation during a substorm.
H. Gunell, L. Andersson, J. De Keyser, and I. Mann
Ann. Geophys., 33, 279–293, https://doi.org/10.5194/angeo-33-279-2015, https://doi.org/10.5194/angeo-33-279-2015, 2015
Short summary
Short summary
In this paper, we simulate the plasma on a magnetic field line above the aurora. Initially, about half of the acceleration voltage is concentrated in a thin double layer at a few thousand km altitude. When the voltage is lowered, electrons trapped between the double layer and the magnetic mirror are released. In the process we see formation of electron beams and phase space holes. A temporary reversal of the polarity of the double layer is also seen as well as hysteresis effects in its position.
T. Takahashi, S. Nozawa, M. Tsutsumi, C. Hall, S. Suzuki, T. T. Tsuda, T. D. Kawahara, N. Saito, S. Oyama, S. Wada, T. Kawabata, H. Fujiwara, A. Brekke, A. Manson, C. Meek, and R. Fujii
Ann. Geophys., 32, 1195–1205, https://doi.org/10.5194/angeo-32-1195-2014, https://doi.org/10.5194/angeo-32-1195-2014, 2014
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
H. Suzuki, T. Nakamura, M. K. Ejiri, T. Ogawa, M. Tsutsumi, M. Abo, T. D. Kawahara, Y. Tomikawa, A. S. Yukimatu, and N. Sato
Ann. Geophys., 31, 1793–1803, https://doi.org/10.5194/angeo-31-1793-2013, https://doi.org/10.5194/angeo-31-1793-2013, 2013
H. Gunell, J. De Keyser, E. Gamby, and I. Mann
Ann. Geophys., 31, 1227–1240, https://doi.org/10.5194/angeo-31-1227-2013, https://doi.org/10.5194/angeo-31-1227-2013, 2013
I. Mann and M. Hamrin
Ann. Geophys., 31, 39–44, https://doi.org/10.5194/angeo-31-39-2013, https://doi.org/10.5194/angeo-31-39-2013, 2013
Cited articles
Antonsen, T., Havnes, O., and Mann, I.: Estimates of the Size Distribution of Meteoric Smoke Particles From Rocket-Borne Impact Probes, J. Geophys. Res.-Atmos., 122, 12353–12365, https://doi.org/10.1002/2017JD027220, 2017. a
Bardeen, C., Toon, O., Jensen, E., Marsh, D., and Harvey, V.: Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere, J. Geophys. Res.-Atmos., 113, D17202, https://doi.org/10.1029/2007JD009515, 2008. a, b, c
Baumann, C., Rapp, M., Kero, A., and Enell, C.-F.: Meteor smoke influences on the D-region charge balance – review of recent in situ measurements and one-dimensional model results, Ann. Geophys., 31, 2049–2062, https://doi.org/10.5194/angeo-31-2049-2013, 2013. a
Brooke, J. S., Feng, W., Carrillo-Sánchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G., Marshall, L., Dhomse, S. S., and Plane, J. M.: Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.-Atmos., 122, 11–112, 2017. a
Friedrich, M., Rapp, M., Blix, T., Hoppe, U.-P., Torkar, K., Robertson, S., Dickson, S., and Lynch, K.: Electron loss and meteoric dust in the mesosphere, Ann. Geophys., 30, 1495–1501, https://doi.org/10.5194/angeo-30-1495-2012, 2012. a
Gunnarsdottir, T. L. and Mann, I.: Charged dust in the D-region incoherent scatter spectrum, J. Plasma Phys., 87, 905870502, https://doi.org/10.1017/S0022377821000866, 2021. a, b, c, d
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res.-Space, 96, 1159–1172, 1991. a
Hervig, M. E., Brooke, J. S., Feng, W., Bardeen, C. G., and Plane, J. M.: Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models, J. Geophys. Res.-Atmos., 122, 13–495, https://doi.org/10.1002/2017JD027657, 2017. a, b
Hervig, M. E., Plane, J. M. C., Siskind, D. E., Feng, W., Bardeen, C. G., and Bailey, S. M.: New global meteoric smoke observations from SOFIE: Insight regarding chemical composition, meteoric influx, and hemispheric asymmetry, J. Geophys. Res.-Atmos., 126, e2021JD035007, https://doi.org/10.1029/2021JD035007, 2021. a
Hunten, D. M., Turco, R. P., and Toon, O. B.: Smoke and dust particles of meteoric origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342–1357, 1980. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, B. Am. Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Lehtinen, M. S. and Huuskonen, A.: General incoherent scatter analysis and GUISDAP, J. Atmos. Terr. Phys., 58, 435–452, https://doi.org/10.1016/0021-9169(95)00047-X, 1996. a
Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM), J. Climate, 26, 7372–7391, https://doi.org/10.1175/JCLI-D-12-00558.1, 2013. a
Mathews, J. D.: The effect of negative ions on collision-dominated Thomson scattering, J. Geophys. Res.-Space, 83, 505–512, 1978. a
Megner, L., Rapp, M., and Gumbel, J.: Distribution of meteoric smoke – sensitivity to microphysical properties and atmospheric conditions, Atmos. Chem. Phys., 6, 4415–4426, https://doi.org/10.5194/acp-6-4415-2006, 2006. a, b
Megner, L., Siskind, D., Rapp, M., and Gumbel, J.: Global and temporal distribution of meteoric smoke: A two-dimensional simulation study, J. Geophys. Res.-Atmos., 113, D03202, https://doi.org/10.1029/2007JD009054, 2008. a
NASA: Solar Proton Events from 1976, https://umbra.nascom.nasa.gov/SEP/, last access: 20 June 2023. a
Nozawa, S., Kawahara, T., Saito, N., Hall, C., Tsuda, T., Kawabata, T., Wada, S., Brekke, A., Takahashi, T., Fujiwara, H., Ogawa, Y., and Fujii, R.: Variations of the neutral temperature and sodium density between 80 and 107 km above Tromsø during the winter of 2010–2011 by a new solid-state sodium lidar, J. Geophys. Res.-Space, 119, 441–451, https://doi.org/10.1002/2013JA019520, 2014. a, b
Plane, J. M. C.: Cosmic dust in the earth's atmosphere, Chem. Soc. Rev., 41, 6507–6518, https://doi.org/10.1039/C2CS35132C, 2012. a
Plane, J. M., Feng, W., and Dawkins, E. C.: The mesosphere and metals: Chemistry and changes, Chem. Rev., 115, 4497–4541, 2015. a
Rapp, M. and Lübken, F.-J.: Polar mesosphere summer echoes (PMSE): Review of observations and current understanding, Atmos. Chem. Phys., 4, 2601–2633, https://doi.org/10.5194/acp-4-2601-2004, 2004. a
Rapp, M., Plane, J. M. C., Strelnikov, B., Stober, G., Ernst, S., Hedin, J., Friedrich, M., and Hoppe, U.-P.: In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition, Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, 2012. a
Rosinski, J. and Snow, R.: Secondary particulate matter from meteor vapors, J. Meteorol., 18, 736–745, 1961. a
Saunders, R. W. and Plane, J. M.: A photo-chemical method for the production of olivine nanoparticles as cosmic dust analogues, Icarus, 212, 373–382, 2011. a
Strelnikova, I., Rapp, M., Raizada, S., and Sulzer, M.: Meteor smoke particle properties derived from Arecibo incoherent scatter radar observations, Geophys. Res. Lett., 34, L15815, https://doi.org/10.1029/2007GL030635, 2007. a, b, c
Thomas, N., Kero, A., and Virtanen, I.: Study of D region ionosphere using incoherent scatter radar measurements, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12698, https://doi.org/10.5194/egusphere-egu23-12698, 2023. a, b
Short summary
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great deal of material that binds with other atmospheric particles and forms so-called meteoric smoke particles. These particles are assumed to influence radar measurements. Here, we have compared radar measurements with simulations of a radar spectrum with and without dust particles and found that dust influences the radar spectrum in the altitude range of 75–85 km.
Several tons of meteoric particles burn up in our atmosphere each day. This deposits a great...