Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-281-2023
https://doi.org/10.5194/angeo-41-281-2023
Regular paper
 | 
13 Jul 2023
Regular paper |  | 13 Jul 2023

Fluid models capturing Farley–Buneman instabilities

Enrique L. Rojas, Keaton J. Burns, and David L. Hysell

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionospheric irregularities
Temporal and altitudinal variability of the spread F observed by the VHF radar over Christmas Island
Ricardo Yvan de La Cruz Cueva, Eurico Rodrigues de Paula, and Acácio Cunha Neto
Ann. Geophys., 40, 563–570, https://doi.org/10.5194/angeo-40-563-2022,https://doi.org/10.5194/angeo-40-563-2022, 2022
Short summary
Effect of neutral winds on the creation of non-specular meteor trail echoes
Freddy Galindo, Julio Urbina, and Lars Dyrud
Ann. Geophys., 39, 709–719, https://doi.org/10.5194/angeo-39-709-2021,https://doi.org/10.5194/angeo-39-709-2021, 2021
Short summary
Simultaneous ground-based and in situ Swarm observations of equatorial F-region irregularities over Jicamarca
Sharon Aol, Stephan Buchert, Edward Jurua, and Marco Milla
Ann. Geophys., 38, 1063–1080, https://doi.org/10.5194/angeo-38-1063-2020,https://doi.org/10.5194/angeo-38-1063-2020, 2020
Short summary
Occurrence climatology of equatorial plasma bubbles derived using FormoSat-3 ∕ COSMIC GPS radio occultation data
Ankur Kepkar, Christina Arras, Jens Wickert, Harald Schuh, Mahdi Alizadeh, and Lung-Chih Tsai
Ann. Geophys., 38, 611–623, https://doi.org/10.5194/angeo-38-611-2020,https://doi.org/10.5194/angeo-38-611-2020, 2020
Short summary
Localized total electron content enhancements in the Southern Hemisphere
Ilya K. Edemskiy
Ann. Geophys., 38, 591–601, https://doi.org/10.5194/angeo-38-591-2020,https://doi.org/10.5194/angeo-38-591-2020, 2020
Short summary

Cited articles

Bahcivan, H.: Plasma wave heating during extreme electric fields in the high-latitude E-region, Geophys. Res. Lett., 34, L15106, https://doi.org/10.1029/2006GL029236, 2007. a
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., and Brown, B. P.: Dedalus: A flexible framework for numerical simulations with spectral methods, Phys. Rev. Res., 2, 023068, https://doi.org/10.1103/PhysRevResearch.2.023068, 2020. a, b
Dedalus Project: Dedalus – A flexible framework for spectrally solving differential equations, https://dedalus-project.org, last access: 11 July 2023. a
Dimant, Y. and Oppenheim, M.: Ion thermal effects on E-region instabilities: Linear theory, J. Atmos. Sol.-Terr. Phy., 66, 1639–1654, 2004. a, b, c, d
Dimant, Y. S. and Oppenheim, M.: Magnetosphere-ionosphere coupling through E region turbulence: 2. Anomalous conductivities and frictional heating, J. Geophys. Res., 116, A09304, https://doi.org/10.1029/2011JA016649, 2011. a
Download
Short summary
The standard linear fluid theory of Farley and Buneman predicts that kinetic physics are required to avoid the artificial growth of smaller structures. We explore the possibility of simulating the Farley–Buneman instability using, for the first time, a fully fluid five-moment model. This is the first time a fully fluid model has been used to simulate the Farley–Buneman instability. The results obtained with both models are qualitatively consistent with the ones from kinetic simulations.