Articles | Volume 40, issue 2
https://doi.org/10.5194/angeo-40-191-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-40-191-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A multi-instrumental and modeling analysis of the ionospheric responses to the solar eclipse on 14 December 2020 over the Brazilian region
Laysa C. A. Resende
CORRESPONDING AUTHOR
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Yajun Zhu
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
Clezio M. Denardini
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Sony S. Chen
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Ronan A. J. Chagas
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Lígia A. Da Silva
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Carolina S. Carmo
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Juliano Moro
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
Southern Space Coordination – COESU, Santa Maria, RS, Brazil
Diego Barros
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Paulo A. B. Nogueira
Instituto Federal de Educação Ciência e Tecnologia de São Paulo
– IFSP, Jacareí, SP, Brazil
José P. Marchezi
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Giorgio A. S. Picanço
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Paulo Jauer
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Régia P. Silva
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Douglas Silva
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
José A. Carrasco
National Institute for Space Research – INPE, São José dos
Campos, SP, Brazil
Chi Wang
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
Zhengkuan Liu
State Key Laboratory of Space Weather – NSSC/CAS, Beijing, China
Related authors
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022, https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Short summary
In this work, we use the Disturbance Ionosphere indeX (DIX) to study equatorial plasma bubble (EPB) events over the Brazilian equatorial and low latitudes. Our results showed that the DIX detected EPB disturbances in terms of their intensity and occurrence times. Therefore, these responses agreed with the ionosphere behavior before, during, and after the studied EPBs. Finally, these disturbances tended to be higher (lower) in high (low) solar activity.
Juliano Moro, Jiyao Xu, Clezio Marcos Denardini, Laysa Cristina Araújo Resende, Régia Pereira Silva, Sony Su Chen, Giorgio Arlan da Silva Picanço, Liu Zhengkuan, Hui Li, Chunxiao Yan, Chi Wang, and Nelson Jorge Schuch
Ann. Geophys., 38, 457–466, https://doi.org/10.5194/angeo-38-457-2020, https://doi.org/10.5194/angeo-38-457-2020, 2020
Short summary
Short summary
The monthly averages of the F2 critical frequency (foF2), its peak height (hmF2), and the E-region critical frequency (foE) acquired by the DPS4-D installed in Santa Maria, Brazil, is compared to the International Reference Ionosphere (IRI-2016) model predictions. It is important to test the performance of the IRI over Santa Maria because it is located in the SAMA, which is a region particularly important for high-frequency (HF) ground-to-satellite navigation signals.
Regia Pereira da Silva, Clezio Marcos Denardini, Manilo Soares Marques, Laysa Cristina Araujo Resende, Juliano Moro, Giorgio Arlan da Silva Picanço, Gilvan Luiz Borba, and Marcos Aurelio Ferreira dos Santos
Ann. Geophys., 38, 27–34, https://doi.org/10.5194/angeo-38-27-2020, https://doi.org/10.5194/angeo-38-27-2020, 2020
Short summary
Short summary
In this work, we studied the HILDCAA disturbance time effects in the TEC by analyzing local time and seasonal dependences, and the influences of the solar wind velocity on a sample of 10 intervals occurring in 2015 and 2016. The main results show great variability in the hourly distribution of the dTEC between one interval and another, seasonal behavior different from that presented by geomagnetic storms, and interestingly no relation between the dTEC disturbances and the magnitude of the HSS.
Laysa Cristina Araujo Resende, Clezio Marcos Denardini, Giorgio Arlan Silva Picanço, Juliano Moro, Diego Barros, Cosme Alexandre Oliveira Barros Figueiredo, and Régia Pereira Silva
Ann. Geophys., 37, 807–818, https://doi.org/10.5194/angeo-37-807-2019, https://doi.org/10.5194/angeo-37-807-2019, 2019
Short summary
Short summary
The Brazilian Space Weather Study and Monitoring Program (Embrace) has been developing different indexes that describe ionospheric effects in the Brazilian sector. The main purpose of this work was to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity. We analyzed 7 years of data in order to construct a standardized scale. The results of this new index allow us to evaluate the impacts of ionospheric phenomena in the space weather environment.
Laysa C. A. Resende, Christina Arras, Inez S. Batista, Clezio M. Denardini, Thainá O. Bertollotto, and Juliano Moro
Ann. Geophys., 36, 587–593, https://doi.org/10.5194/angeo-36-587-2018, https://doi.org/10.5194/angeo-36-587-2018, 2018
Short summary
Short summary
We present new results on the behavior of sporadic E layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data over Cachoeira Paulista, a low-latitude station in Brazil.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022, https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Short summary
In this work, we use the Disturbance Ionosphere indeX (DIX) to study equatorial plasma bubble (EPB) events over the Brazilian equatorial and low latitudes. Our results showed that the DIX detected EPB disturbances in terms of their intensity and occurrence times. Therefore, these responses agreed with the ionosphere behavior before, during, and after the studied EPBs. Finally, these disturbances tended to be higher (lower) in high (low) solar activity.
Joyrles Fernandes de Moraes, Igo Paulino, Lívia R. Alves, and Clezio Marcos Denardini
Ann. Geophys., 38, 881–888, https://doi.org/10.5194/angeo-38-881-2020, https://doi.org/10.5194/angeo-38-881-2020, 2020
Short summary
Short summary
Effects of space weather events in technological systems were studied in the tropical region of Brazil by investigating the Bolivia–Brazil pipeline during space weather events with different intensities. The results presented significant corrosion levels during the 17 March 2015 geomagnetic storm and showed that the effects of space weather must be accounted for, even in low latitudes, since the lifetime of the pipelines can be reduced.
Juliano Moro, Jiyao Xu, Clezio Marcos Denardini, Laysa Cristina Araújo Resende, Régia Pereira Silva, Sony Su Chen, Giorgio Arlan da Silva Picanço, Liu Zhengkuan, Hui Li, Chunxiao Yan, Chi Wang, and Nelson Jorge Schuch
Ann. Geophys., 38, 457–466, https://doi.org/10.5194/angeo-38-457-2020, https://doi.org/10.5194/angeo-38-457-2020, 2020
Short summary
Short summary
The monthly averages of the F2 critical frequency (foF2), its peak height (hmF2), and the E-region critical frequency (foE) acquired by the DPS4-D installed in Santa Maria, Brazil, is compared to the International Reference Ionosphere (IRI-2016) model predictions. It is important to test the performance of the IRI over Santa Maria because it is located in the SAMA, which is a region particularly important for high-frequency (HF) ground-to-satellite navigation signals.
Kun Wu, Jiyao Xu, Xinan Yue, Chao Xiong, Wenbin Wang, Wei Yuan, Chi Wang, Yajun Zhu, and Ji Luo
Ann. Geophys., 38, 163–177, https://doi.org/10.5194/angeo-38-163-2020, https://doi.org/10.5194/angeo-38-163-2020, 2020
Short summary
Short summary
An equatorial plasma bubble (EPB) event, emerging near dawn and developing after sunrise, was simultaneously observed by an all-sky imager and the global navigation satellite system (GNSS) network. The observed EPBs showed westward drifts, different from post-sunset EPBs. The EPBs occurred in the recovery phase of a geomagnetic storm, possibly playing a key role in initializing their developments. The results provide a new perspective of EPBs, enriching our knowledge of ionospheric irregularity.
Regia Pereira da Silva, Clezio Marcos Denardini, Manilo Soares Marques, Laysa Cristina Araujo Resende, Juliano Moro, Giorgio Arlan da Silva Picanço, Gilvan Luiz Borba, and Marcos Aurelio Ferreira dos Santos
Ann. Geophys., 38, 27–34, https://doi.org/10.5194/angeo-38-27-2020, https://doi.org/10.5194/angeo-38-27-2020, 2020
Short summary
Short summary
In this work, we studied the HILDCAA disturbance time effects in the TEC by analyzing local time and seasonal dependences, and the influences of the solar wind velocity on a sample of 10 intervals occurring in 2015 and 2016. The main results show great variability in the hourly distribution of the dTEC between one interval and another, seasonal behavior different from that presented by geomagnetic storms, and interestingly no relation between the dTEC disturbances and the magnitude of the HSS.
Laysa Cristina Araujo Resende, Clezio Marcos Denardini, Giorgio Arlan Silva Picanço, Juliano Moro, Diego Barros, Cosme Alexandre Oliveira Barros Figueiredo, and Régia Pereira Silva
Ann. Geophys., 37, 807–818, https://doi.org/10.5194/angeo-37-807-2019, https://doi.org/10.5194/angeo-37-807-2019, 2019
Short summary
Short summary
The Brazilian Space Weather Study and Monitoring Program (Embrace) has been developing different indexes that describe ionospheric effects in the Brazilian sector. The main purpose of this work was to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity. We analyzed 7 years of data in order to construct a standardized scale. The results of this new index allow us to evaluate the impacts of ionospheric phenomena in the space weather environment.
Maurício J. A. Bolzan, Clezio M. Denardini, and Alexandre Tardelli
Ann. Geophys., 36, 937–943, https://doi.org/10.5194/angeo-36-937-2018, https://doi.org/10.5194/angeo-36-937-2018, 2018
Mangalathayil A. Abdu, Paulo A. B. Nogueira, Angela M. Santos, Jonas R. de Souza, Inez S. Batista, and Jose H. A. Sobral
Ann. Geophys., 36, 609–620, https://doi.org/10.5194/angeo-36-609-2018, https://doi.org/10.5194/angeo-36-609-2018, 2018
Short summary
Short summary
Equatorial ionospheric irregularities have a significant detrimental impact on a variety of space application systems in navigation and communication areas that utilize satellites, especially the Global Navigation Satellite Systems (GNSS) network. The development of these irregularities in the nighttime ionosphere is controlled primarily by ionospheric electric fields and instabilities. The effect of magnetic disturbance on these electric fields and on the irregularities is investigated here.
Laysa C. A. Resende, Christina Arras, Inez S. Batista, Clezio M. Denardini, Thainá O. Bertollotto, and Juliano Moro
Ann. Geophys., 36, 587–593, https://doi.org/10.5194/angeo-36-587-2018, https://doi.org/10.5194/angeo-36-587-2018, 2018
Short summary
Short summary
We present new results on the behavior of sporadic E layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data over Cachoeira Paulista, a low-latitude station in Brazil.
Paulo A. B. Nogueira, Mangalathayil A. Abdu, Jonas R. Souza, Clezio M. Denardini, Paulo F. Barbosa Neto, João P. Serra de Souza da Costa, and Ana P. M. Silva
Ann. Geophys., 36, 139–147, https://doi.org/10.5194/angeo-36-139-2018, https://doi.org/10.5194/angeo-36-139-2018, 2018
Short summary
Short summary
We have analyzed the low-latitude ionospheric responses to solar flares. In particular we show for the first time that 5 to 8 min of time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. We propose that the flare induced enhancement in neutral wind occurring with a time delay could be responsible for a delayed zonal electric field disturbance driving the EEJ.
Diego Barros, Hisao Takahashi, Cristiano M. Wrasse, and Cosme Alexandre O. B. Figueiredo
Ann. Geophys., 36, 91–100, https://doi.org/10.5194/angeo-36-91-2018, https://doi.org/10.5194/angeo-36-91-2018, 2018
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
Cited articles
Adeniyi, J. O., Radicella, S. M., Adimula, I. A., Willoughby, A. A.,
Oladipo, O. A., and Olawepo, O.: Signature of the
29 March 2006 eclipse on the ionosphere over an equatorial station, J.
Geophys. Res., 112, A06314, https://doi.org/10.1029/2006JA012197, 2007.
Abdu, M. A., Alam Kherani, E., Batista, I. S., de Paula, E. R., Fritts, D. C., and Sobral, J. H. A.: Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign, Ann. Geophys., 27, 2607–2622, https://doi.org/10.5194/angeo-27-2607-2009, 2009.
Bailey, G. J., Sellek, R., and Rippeth, Y.: A modelling study of the equatorial
topside ionosphere, Ann. Geophys., 11, 263–272, 1993.
Carrasco, A. J., Batista, I. S., and Abdu, M. A.: Simulation of the sporadic E
layer response to pre-reversal associated evening vertical electric field
enhancement near dip equator, J. Geophys. Res.-Space, 112,
324–335, https://doi.org/10.1029/2006JA012143, 2007.
Chandra, H., Sharma, S., Lele, P. D., Rajaram, G., and Hanchinal, A.:
Ionospheric measurements during the total solar eclipse of 11 August 1999,
Earth Planets Space, 59, 59–64, https://doi.org/10.1186/BF03352023, 2007.
Chen, C. H., Lin, C. H. C., and Matsuo, T.: Ionospheric responses to the 21
August 2017 solar eclipse by using data assimilation approach, Progr.
Earth Planet. Science, 3, 1–9, https://doi.org/10.1186/s40645-019-0263-4,
2019.
Chen, G., Zhao, Z., Zhou, C., Yang, G., and Zhang, Y.: Solar eclipse effects of 22 July 2009 on Sporadic-E, Ann. Geophys., 28, 353–357, https://doi.org/10.5194/angeo-28-353-2010, 2010a.
Chen, G., Zhao, Z., Z, Yang, G., Zhou, C., Yao, M., Li, T., Huang, S., and Li,
N.: Enhancement and HF Doppler observations of sporadic E during the solar
eclipse of 22 July 2009, J. Geophys. Res.-Space, 115, A09325,
https://doi.org/10.1029/2010JA015530, 2010b.
Chen, G., Wang, J., Reinisch, B. W., Li, Y., and Gong, W.: Disturbances in
Sporadic-E During the Great Solar Eclipse of August 21, 2017, J. Geophys. Res.-Space, 126, e2020JA028986, https://doi.org/10.1029/2020JA028986,
2019.
Cherniak, I. and Zakharenkova, I.:
Ionospheric total electron conte nt
response to the great American solar
eclipse of 21 August 2017, Geophys.
Res. Lett., 45, 1199–1208, https://doi.org/10.1002/2017GL075989, 2018a.
Cherniak, I. and Zakharenkova, I.: Ionospheric Total Electron Content
Response
to the Great American Solar Eclipse
of 21 August 2017, Space Weather, 16, 1377–1395, https://doi.org/10.1029/2018SW001869, 2018b.
Chernogor, L. F., Domninb, I. F., Emelyanovb, L. Y., and Lyashenko, M. V.:
Physical processes in the ionosphere during the solar eclipse on March 20,
2015 over Kharkiv, Ukraine (49.6∘ N, 36.3∘ E),
J. Atmos. Sol.-Terr. Phy., 182, 1–9, https://doi.org/10.1016/j.jastp.2018.10.016,
2019.
Denardini, C. M., Dasso, S., and Gonzalez-Esparza, J. A.: Review on space
weather in Latin America. 2. The research networks ready for space weather. Adv.Space Res., 58, 1940–1959, https://doi.org/10.1016/j.asr.2016.03.013, 2016 (data available at: http://www2.inpe.br/climaespacial/portal/en/, last access: 10 September 2021).
Fargues, T., Jodogneb, J. C., Bamfordc, R., Le Rouxd, Y., Gauthierd, F.,
Vilae, P. M., Altadillf, D., Solef, J. G., and Mirog, G.: Disturbances of the
western European ionosphere during the total solar eclipse of 11 August 1999
measured by a wide ionosonde and radar network, J. Atmos. Sol.-Terr. Phy.,
63, 915–924, https://doi.org/10.1016/S1364-6826(00)00204-2, 2001.
Huba, J. D. and Drob, D.: SAMI3 prediction of the impact of the 21 August 2017
total solar eclipse on the ionosphere/plasmasphere system, Geophys. Res.
Lett., 44, 5928–5935, https://doi.org/10.1002/2017GL073549, 2017.
Huang, F., Li, Q., Shen, X., Xiong, C., Yan, R., Zhang, S.-R., Wang, W., Aa,
E., and Lei, J.: Ionospheric responses at low latitudes to the annular solar
eclipse on 21 June 2020, J. Geophys. Res.-Space, 125, e2020JA028483,
https://doi.org/10.1029/2020JA028483, 2020.
Isaacs, J. J., Tessein, J. A., and Matthaeus, W. H.: Systematic averaging
interval effects on solar wind statistics, J. Geophys. Res.-Space, 120,
868–879, https://doi.org/10.1002/2014JA020661, 2015.
Jonah, O. F., Goncharenko, L., Erickson, P. J., Zhang, S., Coster, A., Chau,
J. L., de Paula, E. R., and Rideout, W.: Anomalous behavior of the equatorial
ionization anomaly during the 2 July 2019 solar eclipse, J. Geophys. Res.-Space, 125, e2020JA027909, https://doi.org/10.1029/2020JA027909, 2020.
Martìnez-Ledesma, M., Bravo, M., Urra, B., Souza, J., and Foppiano, A.:
Prediction of the ionospheric response to the 14 December 2020 total solar
eclipse using SUPIM-INPE, J. Geophys. Res.-Space, 125,
https://doi.org/10.1029/2020JA028625, 2020.
Minnis, C. M.: Ionospheric behaviour at Khartoum during the eclipse of
25th February 1952, J. Atmos. Sol.-Terr. Phy., 6, 91–112,
https://doi.org/10.1016/0021-9169(55)90015-5, 1955.
Le, H., Liu, L., Yue, X., and Wan, W.: The ionospheric responses to the 11 August 1999 solar eclipse: observations and modeling, Ann. Geophys., 26, 107–116, https://doi.org/10.5194/angeo-26-107-2008, 2008.
Le, H., Liu, L., Yue, X., and Wan, W.: The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse, Ann. Geophys., 27, 179–184, https://doi.org/10.5194/angeo-27-179-2009, 2009.
Nogueira, P. A. B., Abdu, M. A., Batista, I. S., and Siqueira, P. M.: Equatorial
ionization anomaly and thermospheric meridional winds during two major
storms over Brazilian low latitudes, J. Atmos. Sol.-Terr. Phy., 73,
1535–1543, https://doi.org/10.1016/j.jastp.2011.02.008, 2011.
Nogueira, P. A. B., Souza, J. R., Abdu, M. A., Paes, R. R., Sousasantos, J.,
Marques, M. S., Bailey, G. J., Denardini, C. M., Batista, I. S., Takahashi,
H., Cueva, R. Y. C., and Chen, S. S.: Modeling the equatorial and low-latitude
ionospheric response to an intense X-class solar flare, J. Geophys. Res.-Space, 120, 3021–3032, https://doi.org/10.1002/2014JA020823, 2015.
Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., and Miyazaki, S.: A
new technique for mapping of total electron content using GPS network in
Japan, Earth Planets Space, 54, 63–70, https://doi.org/10.1186/BF03352422,
2002.
Pezzopane, M., Pignalberi, A., Pietrella, M., and Tozzi, R.: 20 March 2015 solar
eclipse influence on sporadic E layer, Adv. Space Res., 56, 2064–2072,
https://doi.org/10.1016/j.asr.2015.08.001, 2015.
Reinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Bibl, K.,
Lisysyan, I. A., Cheney, G. P., Huang, X., Kitrosser, D. F., Paznukhov, V.
V., Luo, Y., Jones, W., Stelmash, S., Hamel, R., and Grochmal, J.: New Digisonde
for research and monitoring applications, Radio Sci., 44, RS0A24,
https://doi.org/10.1029/2008RS004115, 2009.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Batista, P. P.,
Carrasco, A. J., Andrioli, V. F., and Moro, J.: Simulations of blanketing
sporadic E-layer over the Brazilian sector driven by tidal winds, J. Atmos. Sol.-Terr. Phy., 154, 104–114, https://doi.org/10.1016/j.jastp.2016.12.012, 2017a.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Batista, P. P.,
Carrasco, A. J., Andrioli, V. F., and Moro, J.: The influence of tidal winds in
the formation of blanketing sporadic E-layer over equatorial Brazilian
region, J. Atmos. Sol.-Terr. Phy., 171, 64–67,
https://doi.org/10.1016/j.jastp.2017.06.009, 2017b.
Resende, L. C. A. Shi, J. K. Denardini, C. M., Batista, I. S., Nogueira, P.
A. B., Arras, C., Andrioli, V. F., Moro, J., Silva, L., Carrasco, A. J.,
Barbosa, P. F., Wang, C., and Liu, Z.: The influence of disturbance dynamo
electric field in the formation of strong sporadic E-layers over Boa Vista,
a low latitude station in American Sector, J. Geophys. Res.-Space,
108, 1176, https://doi.org/10.1029/2019JA027519, 2020.
Resende, L. C. A., Shi, J., Denardini, C. M., Batista, I. S., Picanço,
G. A., Moro, J., Chagas, R. A. J., Barros, D., Chen, S. S., Nogueira, P. A.
B., Andrioli, V. F., Silva, R. P., Carrasco, A. J., Wang, C., and Liu, Z.: The
Impact of the Disturbed Electric Field in the Sporadic E (Es) Layer
Development Over Brazilian Region, J. Geophys. Res.-Space, 126,
e2020JA028598, https://doi.org/10.1029/2020JA028598, 2021.
Rishbeth, H.: Solar eclipses and ionospheric theory, Space Sci. Rev.,
8, 543–554, https://doi.org/10.1007/BF00175006, 1968.
Souza, J., Brum, C., Abdu, M., Batista, I., Asevedo, W., Bailey, G., and
Bittencourt, J.: Parameterized regional ionospheric model and a comparison
of its results with experimental data and IRI representations, Adv. Space
Res., 46, 1032–1038, https://doi.org/10.1016/j.asr.2009.11.025, 2010.
Sridharan, R., Devasia, C. V., Jyoti, N., Tiwari, D., Viswanathan, K. S., and Subbarao, K. S. V.: Effects of solar eclipse on the electrodynamical processes of the equatorial ionosphere: a case study during 11 August 1999 dusk time total solar eclipse over India, Ann. Geophys., 20, 1977–1985, https://doi.org/10.5194/angeo-20-1977-2002, 2002.
Stone, E., Frandsen, A., Mewaldt, R., Christian, E. R., Margolies, D.,
Ormes, J. F., and Snow, F.: The advanced Composition Explorer, Space Sci. Rev.,
86, 1–22, https://doi.org/10.1023/A:1005082526237, 1998 (data available at: http://www.srl.caltech.edu/ACE/ASC/DATA/browse-data/, last access: 2 July 2021).
Takahashi, H., Wrasse, C. M, Denardini, C. M., Pádua, M. B., de Paula,
E. R., Costa, S. M. A., Otsuka, Y., Shiokawa, K., Galera Monico, J. F., Ivo,
A., and Sant'Anna, N.: Ionospheric TEC Weather Map Over South America, Space
Weather, 14, 937–949, https://doi.org/10.1002/2016SW001474, 2016.
Tiwari, P., Parihar, N., Dube, A., Singh, R., and Sripathic, S.: Abnormal
behaviour of sporadic E-layer during the total solar eclipse of 22 July 2009
near the crest of EIA over India, Adv. Space Res., 64, 2145–2153,
https://doi.org/10.1016/j.asr.2019.07.037, 2019.
Tsurutani, B. T., Echer, E., and Gonzalez, W. D.: The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839–849, https://doi.org/10.5194/angeo-29-839-2011, 2011.
Vyas, B. M. and Sunda, S.: The solar eclipse and its associated ionospheric TEC
variations over Indian stations on January 15, 2010, Adv. Space Res., 49,
546–555, https://doi.org/10.1016/j.asr.2011.11.009, 2012.
Vogrincic, R., Lara, A., Borgazzi, A., and Raulin, J. P.: Effects of the Great
American Solar Eclipse on the lower ionosphere observed with VLF waves, Adv.
Space Res., 65, 2148–2157, https://doi.org/10.1016/j.asr.2019.10.032, 2020.
Yadav, S., Das, R. M., Dabas, R. S., and Gwal, A. K.: The response of sporadic
E-layer to the total solar eclipse of July 22, 2009 over the equatorial
ionization anomaly region of the Indian zone, Adv. Space Res., 51,
2043–2047, https://doi.org/10.1016/j.asr.2013.01.011, 2013.
Zhang, S. R., Erickson, P. J., Vierinen, J., Aa, E., Rideout, W., Coster, A.
J., and Goncharenko, L. P.: Conjugate ionospheric perturbation during the 2017
solar eclipse, J. Geophys. Res.-Space, 126, e2020JA028531,
https://doi.org/10.1029/2020JA028531, 2021.
Short summary
This study showed the ionospheric response over low-latitude regions in Brazil predicted by Martínez-Ledesma et al. (2020) for the solar eclipse event on 14 December 2020. We used a multi-instrumental and modeling analysis to observe the modifications in the E and F regions and the Es layers over Campo Grande and Cachoeira Paulista. The results showed that solar eclipses can cause significant ionosphere modifications even though they only partially reach the Brazilian low-latitude regions.
This study showed the ionospheric response over low-latitude regions in Brazil predicted by...
Special issue