Articles | Volume 39, issue 2
https://doi.org/10.5194/angeo-39-341-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-341-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ionospheric response to solar extreme ultraviolet radiation variations: comparison based on CTIPe model simulations and satellite measurements
Rajesh Vaishnav
CORRESPONDING AUTHOR
Leipzig Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Erik Schmölter
German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Christoph Jacobi
Leipzig Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Jens Berdermann
German Aerospace Center, Kalkhorstweg 53, 17235 Neustrelitz, Germany
Mihail Codrescu
Space Weather Prediction Centre, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
Related authors
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021, https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Short summary
We investigate the role of eddy diffusion in the delayed ionospheric response against solar flux changes in the solar rotation period using the CTIPe model. The study confirms that eddy diffusion is an important factor affecting the delay of the total electron content. An increase in eddy diffusion leads to faster transport processes and an increased loss rate, resulting in a decrease in the ionospheric delay.
Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Christoph Jacobi, Kun Wu, and Gunter Stober
Atmos. Chem. Phys., 25, 9403–9430, https://doi.org/10.5194/acp-25-9403-2025, https://doi.org/10.5194/acp-25-9403-2025, 2025
Short summary
Short summary
Concerns about climate change are growing due to its widespread impacts, including rising temperatures, extreme weather events, and disruptions to ecosystems. To address these challenges, urgent global action is needed to monitor the distribution of trace gases and understand their effects on the atmosphere.
Sina Mehrdad, Sajedeh Marjani, Dörthe Handorf, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3612, https://doi.org/10.5194/egusphere-2025-3612, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how strong wind disturbances caused by mountains can disturb the polar vortex, a large pool of cold air high above the North Pole. Using simulations, we boosted these wind disturbances over the Himalayas, North America, and East Asia. We found they can shift, weaken, and mix the vortex in different ways depending on the region. This helps explain how mountains influence the upper atmosphere and improve forecasts of extreme cold weather at the surface.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys., 43, 427–440, https://doi.org/10.5194/angeo-43-427-2025, https://doi.org/10.5194/angeo-43-427-2025, 2025
Short summary
Short summary
This study focuses on a TIMED Doppler Interferometer (TIDI)–meteor radar (MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI wind measurements and MR winds shows good agreement. A TIDI–MR seasonal comparison and analysis of the altitude–latitude dependence for winds are performed. TIDI reproduces the mean circulation well when compared with MRs and may be a useful lower boundary for general circulation models.
Sina Mehrdad, Sajedeh Marjani, Dörthe Handorf, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3005, https://doi.org/10.5194/egusphere-2025-3005, 2025
Short summary
Short summary
Wind flowing over mountains creates wave-like patterns aloft that can influence the atmosphere higher up in the stratosphere and mesosphere. In this study, we intensified these waves over specific regions like the Himalayas and Rocky Mountains and examined the resulting climate effects. We found that this can shift global wind patterns and even impact extreme events near the poles, showing how small regional changes in stratospheric wind patterns can influence the broader climate system.
J. Federico Conte, Jorge L. Chau, Toralf Renkwitz, Ralph Latteck, Masaki Tsutsumi, Christoph Jacobi, Njål Gulbrandsen, and Satonori Nozawa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1996, https://doi.org/10.5194/egusphere-2025-1996, 2025
Short summary
Short summary
Analysis of 10 years of continuous measurements provided MMARIA/SIMONe Norway and MMARIA/SIMONe Germany reveals that the divergent and vortical motions in the mesosphere and lower thermosphere exchange the dominant role depending on the height and the time of the year. At summer mesopause altitudes over middle latitudes, the horizontal divergence and the relative vorticity contribute approximately the same, indicating an energetic balance between mesoscale divergent and vortical motions.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Christoph Jacobi, Kanykei Kandieva, and Christina Arras
Adv. Radio Sci., 20, 85–92, https://doi.org/10.5194/ars-20-85-2023, https://doi.org/10.5194/ars-20-85-2023, 2023
Short summary
Short summary
Sporadic E (Es) layers are thin regions of accumulated ions in the lower ionosphere. They can be observed by disturbances of GNSS links between low-Earth orbiting satellites and GNSS satellites. Es layers are influenced by neutral atmospheric tides and show the coupling between the neutral atmosphere and the ionosphere. Here we analyse migrating (sun-synchronous) and non-migrating tidal components in Es. The main signatures are migrating Es, but nonmigrating components are found as well.
Gerhard Georg Bruno Schmidtke, Raimund Brunner, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2023-139, https://doi.org/10.5194/egusphere-2023-139, 2023
Preprint withdrawn
Short summary
Short summary
The instrument records annual changes in Spectral Outgoing Radiation from 200–1100 nm, with 60 photomultiplier tubes simultaneously providing spectrometer and photometer data. Using Total Solar Irradiance data with a stability of 0.01 Wm-2 per year to recalibrate the established instruments, stable data of ~0.1 Wm-2 over a solar cycle period is expected. Determination of the changes in the global green Earth coverage and mapping will also assess the impact of climate engineering actions.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474, https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
Short summary
We focus on the impact of small-scale orographic gravity waves (OGWs) above the Himalayas. The interaction of GWs with the large-scale circulation in the stratosphere is not still well understood and can have implications on climate projections. We use a chemistry-climate model to show that these strong OGW events are associated with anomalously increased upward planetary-scale waves and in turn affect the circumpolar circulation and have the potential to alter ozone variability as well.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021, https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Short summary
We investigate the role of eddy diffusion in the delayed ionospheric response against solar flux changes in the solar rotation period using the CTIPe model. The study confirms that eddy diffusion is an important factor affecting the delay of the total electron content. An increase in eddy diffusion leads to faster transport processes and an increased loss rate, resulting in a decrease in the ionospheric delay.
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Cited articles
Abdu, M. A.: Electrodynamics of ionospheric weather over low latitudes,
Geoscience Letters, 3, 11, https://doi.org/10.1186/s40562-016-0043-6, 2016. a, b
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, https://doi.org/10.5194/angeo-26-335-2008, 2008. a
Altadill, D., Apostolov, E., Solé, J., and Jacobi, C.: Origin and
development of vertical propagating oscillations with periods of planetary
waves in the ionospheric F region, Phys. Chem. Earth Pt. C, 26, 387–393,
https://doi.org/10.1016/s1464-1917(01)00019-8, 2001. a
Altadill, D., Apostolov, E. M., Jacobi, Ch., and Mitchell, N. J.: Six-day westward propagating wave in the maximum electron density of the ionosphere, Ann. Geophys., 21, 1577–1588, https://doi.org/10.5194/angeo-21-1577-2003, 2003. a
Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691,
https://doi.org/10.1038/157691a0, 1946. a
Balan, N., Otsuka, Y., Bailey, G. J., and Fukao, S.: Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar,
J. Geophys. Res.-Space, 103, 9481–9495, https://doi.org/10.1029/97ja03137, 1998. a
Chen, P., Liu, H., Ma, Y., and Zheng, N.: Accuracy and consistency of different global ionospheric maps released by IGS ionosphere associate analysis centers, Adv. Space Res., 65, 163–174,
https://doi.org/10.1016/j.asr.2019.09.042, 2020. a
Codrescu, M. V., Fuller-Rowell, T. J., Munteanu, V., Minter, C. F., and
Millward, G. H.: Validation of the Coupled Thermosphere Ionosphere
Plasmasphere Electrodynamics model: CTIPE-Mass Spectrometer
Incoherent Scatter temperature comparison, Space Weather, 6, S09005,
https://doi.org/10.1029/2007sw000364, 2008. a
Codrescu, M. V., Negrea, C., Fedrizzi, M., Fuller-Rowell, T. J., Dobin, A.,
Jakowsky, N., Khalsa, H., Matsuo, T., and Maruyama, N.: A real-time run of
the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics
(CTIPe) model, Space Weather, 10, S02001, https://doi.org/10.1029/2011sw000736, 2012. a, b
Fang, T.-W., Fuller-Rowell, T., Yudin, V., Matsuo, T., and Viereck, R.:
Quantifying the Sources of Ionosphere Day-To-Day Variability,
J. Geophys. Res.-Space, 123, 9682–9696, https://doi.org/10.1029/2018ja025525, 2018. a, b
Fernandez-Gomez, I., Fedrizzi, M., Codrescu, M. V., Borries, C., Fillion, M.,
and Fuller-Rowell, T. J.: On the difference between real-time and research
simulations with CTIPe, Adv. Space Res., 64, 2077–2087,
https://doi.org/10.1016/j.asr.2019.02.028, 2019. a
Fuller-Rowell, T. J.: The “thermospheric spoon”: A mechanism for the semiannual density variation, J. Geophys. Res.-Space, 103, 3951–3956, https://doi.org/10.1029/97ja03335, 1998. a
Fuller-Rowell, T. J. and Rees, D.: A Three-Dimensional Time-Dependent Global
Model of the Thermosphere, J. Atmos. Sci., 37,
2545–2567, https://doi.org/10.1175/1520-0469(1980)037<2545:atdtdg>2.0.co;2, 1980. a
Fuller-Rowell, T. J. and Rees, D.: Derivation of a conservation equation for
mean molecular weight for a two-constituent gas within a three-dimensional,
time-dependent model of the thermosphere, Planet. Space Sci., 31,
1209–1222, https://doi.org/10.1016/0032-0633(83)90112-5, 1983. a, b
Hedin, A. E.: Correlations between thermospheric density and temperature, solar EUV flux, and 10.7 cm flux variations, J. Geophys. Res.-Space, 89, 9828–9834, https://doi.org/10.1029/ja089ia11p09828, 1984. a
Hernández-Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and Krankowski, A.: The IGS
VTEC maps: a reliable source of ionospheric information since
1998, J. Geodesy, 83, 263–275, https://doi.org/10.1007/s00190-008-0266-1, 2009. a
Hinteregger, H. E., Fukui, K., and Gilson, B. R.: Observational, reference and model data on solar EUV, from measurements on
AE-E, Geophys. Res. Lett., 8, 1147–1150, https://doi.org/10.1029/gl008i011p01147, 1981. a
Huang, J., Hao, Y., Zhang, D., and Xiao, Z.: Changes of solar extreme
ultraviolet spectrum in solar cycle
24, J. Geophys. Res.-Space, 121, 6844–6854, https://doi.org/10.1002/2015ja022231, 2016. a
Jacobi, C., Jakowski, N., Schmidtke, G., and Woods, T. N.: Delayed response of the global total electron content to solar EUV variations, Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, 2016. a, b, c, d
Jakowski, N., Fichtelmann, B., and Jungstand, A.: Solar activity control of
ionospheric and thermospheric processes,
J. Atmos. Terr. Phys., 53, 1125–1130, https://doi.org/10.1016/0021-9169(91)90061-b,
1991. a, b, c, d
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H.: Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res.-Space, 117, A10323, https://doi.org/10.1029/2012ja017650, 2012. a
Klipp, T. S., Petry, A., de Souza, J. R., Falcão, G. S., de Campos Velho, H. F., de Paula, E. R., Antreich, F., Hoque, M., Kriegel, M., Berdermann, J., Jakowski, N., Fernandez-Gomez, I., Borries, C., Sato, H., and Wilken, V.: Evaluation of ionospheric models for Central and South Americas, Adv. Space Res., 64, 2125–2136, https://doi.org/10.1016/j.asr.2019.09.005, 2019. a
Lean, J. L., Warren, H. P., Mariska, J. T., and Bishop, J.: A new model of
solar EUV irradiance variability 2. Comparisons with empirical models and
observations and implications for space weather,
J. Geophys. Res.-Space, 108, 1059, https://doi.org/10.1029/2001ja009238, 2003. a, b
Lean, J. L., Woods, T. N., Eparvier, F. G., Meier, R. R., Strickland, D. J.,
Correira, J. T., and Evans, J. S.: Solar extreme ultraviolet irradiance:
Present, past, and future, J. Geophys. Res.-Space,
116, A01102, https://doi.org/10.1029/2010ja015901, 2011. a
Lee, C.-K., Han, S.-C., Bilitza, D., and Seo, K.-W.: Global characteristics of the correlation and time lag between solar and ionospheric parameters in the 27-day period, J. Atmos. Sol.-Terr. Phy., 77,
219–224, https://doi.org/10.1016/j.jastp.2012.01.010, 2012. a, b
Liu, H., Tao, C., Jin, H., and Nakamoto, Y.: Circulation and Tides in a Cooler Upper Atmosphere: Dynamical Effects of CO2
Doubling, Geophys. Res. Lett., 47, e2020GL087413, https://doi.org/10.1029/2020gl087413, 2020. a
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G.,
Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L.,
Richmond, A. D., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang, W.:
Development and Validation of the Whole Atmosphere Community
Climate Model With Thermosphere and Ionosphere Extension
(WACCM-X 2.0), J. Adv. Model. Earth Sy., 10, 381–402,
https://doi.org/10.1002/2017ms001232, 2018. a
Liu, L., Wan, W., Ning, B., and Zhang, M.-L.: Climatology of the mean total
electron content derived from GPS global ionospheric
maps, J. Geophys. Res.-Space, 114, A06308, https://doi.org/10.1029/2009ja014244,
2009. a
Mallat, S.: A Wavelet tour of signal processing: the sparse way, 3rd Edn., Academic Press, Burlington, MA, 832 pp., 2009. a
Mendillo, M., Rishbeth, H., Roble, R., and Wroten, J.: Modelling F2-layer
seasonal trends and day-to-day variability driven by coupling with the lower
atmosphere, J. Atmos. Sol.-Terr. Phy., 64,
1911–1931, https://doi.org/10.1016/s1364-6826(02)00193-1, 2002. a
Millward, G. H., Moffett, R. J., Quegan, S., and Fuller-Rowell,
T. J.: A coupled thermosphere-ionosphere-plasmasphere model
(CTIP), in: Solar-Terrestrial Energy Program: Handbook of Iono-
spheric Models, edited by: Schunk, R. W., Cent. for Atmos. and
Space Sci., Utah State Univ., Logan, Utah, USA, 239–279, 1996. a
Miyoshi, Y., Jin, H., Fujiwara, H., and Shinagawa, H.: Numerical Study of
Traveling Ionospheric Disturbances Generated by an Upward Propagating Gravity
Wave, J. Geophys. Res.-Space, 123, 2141–2155,
https://doi.org/10.1002/2017ja025110, 2018. a
Negrea, C., Codrescu, M. V., and Fuller-Rowell, T. J.: On the validation effort of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics
model, Space Weather, 10, S08010, https://doi.org/10.1029/2012sw000818, 2012. a
Noll, C. E.: The crustal dynamics data information system: A resource to
support scientific analysis using space geodesy, Adv. Space Res.,
45, 1421–1440, https://doi.org/10.1016/j.asr.2010.01.018, 2010. a
Pancheva, D., Schminder, R., and Laštovička, J.: 27-day
fluctuations in the ionospheric D-region,
J. Atmos. Terr. Phys., 53, 1145–1150, https://doi.org/10.1016/0021-9169(91)90064-e,
1991. a
Percival, D. B. and Walden, A. T.: Wavelet Methods for Time Series
Analysis, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511841040, 2000. a
Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C.: The Solar Dynamics
Observatory (SDO), Sol. Phys., 275, 3–15,
https://doi.org/10.1007/s11207-011-9841-3, 2011. a
Quegan, S., Bailey, G., Moffett, R., Heelis, R., Fuller-Rowell, T., Rees, D.,
and Spiro, R.: A theoretical study of the distribution of ionization in the
high-latitude ionosphere and the plasmasphere: first results on the
mid-latitude trough and the light-ion trough, J. Atmos. Terr. Phys., 44, 619–640, https://doi.org/10.1016/0021-9169(82)90073-3, 1982. a
Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar EUV
Flux Model for aeronomic calculations, J. Geophys. Res.-Space,
99, 8981–8992, https://doi.org/10.1029/94ja00518, 1994. a, b, c
Richmond, A. D., Ridley, E. C., and Roble, R. G.: A thermosphere/ionosphere
general circulation model with coupled
electrodynamics, Geophys. Res. Lett., 19, 601–604, https://doi.org/10.1029/92gl00401, 1992. a, b
Ridley, A., Deng, Y., and Tóth, G.: The global
ionosphere–thermosphere model,
J. Atmos. Sol.-Terr. Phy., 68, 839–864, https://doi.org/10.1016/j.jastp.2006.01.008,
2006. a
Romero-Hernandez, E., Denardini, C. M., Takahashi, H., Gonzalez-Esparza, J. A., Nogueira, P. A. B., de Padua, M. B., Lotte, R. G., Negreti, P. M. S., Jonah, O. F., Resende, L. C. A., Rodriguez-Martinez, M., Sergeeva, M. A., Neto, P. F. B., la Luz, V. D., Monico, J. F. G., and Aguilar-Rodriguez, E.: Daytime ionospheric TEC weather study over Latin America, J. Geophys. Res.-Space, 123, 10345–10357, https://doi.org/10.1029/2018ja025943, 2018. a, b, c, d
Schmölter, E., Berdermann, J., Jakowski, N., Jacobi, C., and Vaishnav, R.: Delayed response of the ionosphere to solar EUV variability, Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018, 2018. a, b
Tapping, K. F.: Recent solar radio astronomy at centimeter wavelengths: The
temporal variability of the 10.7 cm flux, J. Geophys. Res.-Atmos.,
92, 829–838, https://doi.org/10.1029/jd092id01p00829, 1987. a
Tobiska, W., Woods, T., Eparvier, F., Viereck, R., Floyd, L., Bouwer, D.,
Rottman, G., and White, O.: The SOLAR2000 empirical solar irradiance model
and forecast tool, J. Atmos. Sol.-Terr. Phy., 62,
1233–1250, https://doi.org/10.1016/s1364-6826(00)00070-5, 2000. a, b
Unglaub, C., Jacobi, C., Schmidtke, G., Nikutowski, B., and Brunner, R.:
EUV-TEC proxy to describe ionospheric variability using satellite-borne
solar EUV measurements: First results, Adv. Space Res., 47,
1578–1584, https://doi.org/10.1016/j.asr.2010.12.014, 2011. a
Vaishnav, R., Jacobi, C., Berdermann, J., Schmölter, E., and Codrescu, M.: Ionospheric response to solar EUV variations: Preliminary results, Adv. Radio Sci., 16, 157–165, https://doi.org/10.5194/ars-16-157-2018, 2018. a, b, c, d
Woods, T. and Rottman, G.: Solar ultraviolet variability over time periods of aeronomic interest, in: Atmospheres in the Solar System: Comparative
Aeronomy, edited by: Mendillo, M., Nagy, A., and Waite, J., American Geophysical Union, Washington, D.C., USA, 221–233, https://doi.org/10.1029/130gm14, 2002. a, b
Woods, T., Bailey, S., Eparvier, F., Lawrence, G., Lean, J., McClintock, W.,
Roble, R., Rottman, G., Solomon, S., Tobiska, W., and White, O. R.: TIMED Solar EUV
experiment, Phys. Chem. Earth Pt. C, 25, 393–396, https://doi.org/10.1016/s1464-1917(00)00040-4, 2000. a
Woods, T., Eparvier, F., Bailey, S. M., Chamberlin, P., Lean, J., Rottman, G., Solomon, S., Tobiska, W., and Woodraska, D.: Solar EUV Experiment (SEE): Mission overview and first results, J. Geophys. Res.-Space, 110, A01312, https://doi.org/10.1029/2004ja010765, 2005. a, b, c
Woods, T., Eparvier, F., Hock, R., Jones, A., Woodraska, D., Judge, D.,
Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-
Rowell, T., Sojka, J., Tobiska, W. K., and Viereck, R.: Extreme
Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument
Design, Data Products, and Model Developments, Sol. Phys., 275,
115–143, https://doi.org/10.1007/s11207-009-9487-6, 2010. a
Zou, L., Rishbeth, H., Müller-Wodarg, I. C. F., Aylward, A. D., Millward, G. H., Fuller-Rowell, T. J., Idenden, D. W., and Moffett, R. J.: Annual and semiannual variations in the ionospheric F2-layer. I. Modelling, Ann. Geophys., 18, 927–944, https://doi.org/10.1007/s00585-000-0927-8, 2000. a
Short summary
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC against the solar EUV flux. The ionospheric delay estimated using model-simulated TEC is in good agreement with the delay estimated for observed TEC. The study confirms the model's capabilities to reproduce the delayed ionospheric response against the solar EUV flux. Results also indicate that the average delay is higher in the Northern Hemisphere as compared to the Southern Hemisphere.
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC...