Articles | Volume 39, issue 2
https://doi.org/10.5194/angeo-39-341-2021
https://doi.org/10.5194/angeo-39-341-2021
Regular paper
 | 
06 Apr 2021
Regular paper |  | 06 Apr 2021

Ionospheric response to solar extreme ultraviolet radiation variations: comparison based on CTIPe model simulations and satellite measurements

Rajesh Vaishnav, Erik Schmölter, Christoph Jacobi, Jens Berdermann, and Mihail Codrescu

Related authors

Role of eddy diffusion in the delayed ionospheric response to solar flux changes
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021,https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Long-term trends in the ionospheric response to solar extreme-ultraviolet variations
Rajesh Vaishnav, Christoph Jacobi, and Jens Berdermann
Ann. Geophys., 37, 1141–1159, https://doi.org/10.5194/angeo-37-1141-2019,https://doi.org/10.5194/angeo-37-1141-2019, 2019
Short summary
Delayed response of the ionosphere to solar EUV variability
Erik Schmölter, Jens Berdermann, Norbert Jakowski, Christoph Jacobi, and Rajesh Vaishnav
Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018,https://doi.org/10.5194/ars-16-149-2018, 2018
Short summary
Ionospheric response to solar EUV variations: Preliminary results
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Erik Schmölter, and Mihail Codrescu
Adv. Radio Sci., 16, 157–165, https://doi.org/10.5194/ars-16-157-2018,https://doi.org/10.5194/ars-16-157-2018, 2018
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Solar-induced atmospheric variability
Role of eddy diffusion in the delayed ionospheric response to solar flux changes
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021,https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary

Cited articles

Abdu, M. A.: Electrodynamics of ionospheric weather over low latitudes, Geoscience Letters, 3, 11, https://doi.org/10.1186/s40562-016-0043-6, 2016. a, b
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, https://doi.org/10.5194/angeo-26-335-2008, 2008. a
Altadill, D., Apostolov, E., Solé, J., and Jacobi, C.: Origin and development of vertical propagating oscillations with periods of planetary waves in the ionospheric F region, Phys. Chem. Earth Pt. C, 26, 387–393, https://doi.org/10.1016/s1464-1917(01)00019-8, 2001. a
Altadill, D., Apostolov, E. M., Jacobi, Ch., and Mitchell, N. J.: Six-day westward propagating wave in the maximum electron density of the ionosphere, Ann. Geophys., 21, 1577–1588, https://doi.org/10.5194/angeo-21-1577-2003, 2003. a
Appleton, E. V.: Two Anomalies in the Ionosphere, Nature, 157, 691, https://doi.org/10.1038/157691a0, 1946. a
Download
Short summary
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC against the solar EUV flux. The ionospheric delay estimated using model-simulated TEC is in good agreement with the delay estimated for observed TEC. The study confirms the model's capabilities to reproduce the delayed ionospheric response against the solar EUV flux. Results also indicate that the average delay is higher in the Northern Hemisphere as compared to the Southern Hemisphere.