Articles | Volume 39, issue 2
https://doi.org/10.5194/angeo-39-309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-309-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inferring thermospheric composition from ionogram profiles: a calibration with the TIMED spacecraft
Christopher J. Scott
CORRESPONDING AUTHOR
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Shannon Jones
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Luke A. Barnard
Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
Related authors
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
Ann. Geophys., 42, 395–418, https://doi.org/10.5194/angeo-42-395-2024, https://doi.org/10.5194/angeo-42-395-2024, 2024
Short summary
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Christopher J. Scott and Patrick Major
Ann. Geophys., 36, 1243–1254, https://doi.org/10.5194/angeo-36-1243-2018, https://doi.org/10.5194/angeo-36-1243-2018, 2018
Short summary
Short summary
The variability of the Earth's ionosphere (the electrified region of the Earth's upper atmosphere) results from external forcing from above (through solar activity and space weather effects) and from below (via natural sources such as lightning storms and tectonics). Bombing raids over Europe during World War II were used to determine the quantitative impact of explosions on the ionosphere. It was found that raids using more than 300 tonnes of explosives weakened the ionosphere for up to 5 h.
C. J. Scott and R. Stamper
Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, https://doi.org/10.5194/angeo-33-449-2015, 2015
Short summary
Short summary
We use a novel technique to infer long-term compositional changes to the thermosphere from the annual variation of the ionospheric F2 region. A global analysis of these data reveal that long-term changes differ between geographic locations in a way that is very similar to the observed variation in the ionospheric response to increased atmospheric CO2 levels. In the absence of long-term measurements of thermospheric composition, further, detailed, modelling work is required.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
C. J. Scott, R. Stamper, and H. Rishbeth
Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, https://doi.org/10.5194/angeo-32-113-2014, 2014
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
Ann. Geophys., 42, 395–418, https://doi.org/10.5194/angeo-42-395-2024, https://doi.org/10.5194/angeo-42-395-2024, 2024
Short summary
Short summary
Long-term change in the ionosphere are expected due to increases in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Christopher J. Scott and Patrick Major
Ann. Geophys., 36, 1243–1254, https://doi.org/10.5194/angeo-36-1243-2018, https://doi.org/10.5194/angeo-36-1243-2018, 2018
Short summary
Short summary
The variability of the Earth's ionosphere (the electrified region of the Earth's upper atmosphere) results from external forcing from above (through solar activity and space weather effects) and from below (via natural sources such as lightning storms and tectonics). Bombing raids over Europe during World War II were used to determine the quantitative impact of explosions on the ionosphere. It was found that raids using more than 300 tonnes of explosives weakened the ionosphere for up to 5 h.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
C. J. Scott and R. Stamper
Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, https://doi.org/10.5194/angeo-33-449-2015, 2015
Short summary
Short summary
We use a novel technique to infer long-term compositional changes to the thermosphere from the annual variation of the ionospheric F2 region. A global analysis of these data reveal that long-term changes differ between geographic locations in a way that is very similar to the observed variation in the ionospheric response to increased atmospheric CO2 levels. In the absence of long-term measurements of thermospheric composition, further, detailed, modelling work is required.
M. Lockwood, H. Nevanlinna, M. Vokhmyanin, D. Ponyavin, S. Sokolov, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 367–381, https://doi.org/10.5194/angeo-32-367-2014, https://doi.org/10.5194/angeo-32-367-2014, 2014
M. Lockwood, H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott
Ann. Geophys., 32, 383–399, https://doi.org/10.5194/angeo-32-383-2014, https://doi.org/10.5194/angeo-32-383-2014, 2014
C. J. Scott, R. Stamper, and H. Rishbeth
Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, https://doi.org/10.5194/angeo-32-113-2014, 2014
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1957–1977, https://doi.org/10.5194/angeo-31-1957-2013, https://doi.org/10.5194/angeo-31-1957-2013, 2013
M. Lockwood, L. Barnard, H. Nevanlinna, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Davis
Ann. Geophys., 31, 1979–1992, https://doi.org/10.5194/angeo-31-1979-2013, https://doi.org/10.5194/angeo-31-1979-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Instruments and techniques
Estimation and evaluation of hourly Meteorological Operational (MetOp) satellites' GPS receiver differential code biases (DCBs) with two different methods
A technique for volumetric incoherent scatter radar analysis
Sounding of sporadic E layers from China Seismo-Electromagnetic Satellite (CSES) radio occultation and comparing with ionosonde measurements
Observing electric field and neutral wind with EISCAT 3D
Radar imaging with EISCAT 3D
Auroral ionospheric E region parameters obtained from satellite- based far-ultraviolet and ground-based ionosonde observations – effects of proton precipitation
Estimating satellite and receiver differential code bias using a relative Global Positioning System network
Validation of Clyde River SuperDARN radar velocity measurements with the RISR-C incoherent scatter radar
Linlin Li and Shuanggen Jin
Ann. Geophys., 41, 465–481, https://doi.org/10.5194/angeo-41-465-2023, https://doi.org/10.5194/angeo-41-465-2023, 2023
Short summary
Short summary
We used the spherical harmonic function (SHF) and the local spherical symmetry (LSS) assumption methods to calculate the hourly and daily LEO satellite GPS differential code bias (DCB). The SHF method is more stable and precise than the LSS assumption. The daily DCB estimation is more accurate and stable than the hourly DCB due to more observation data. Hourly DCBs have large changes in one day, mainly be attributed to random errors because these error time series have a normal distribution.
Johann Stamm, Juha Vierinen, Björn Gustavsson, and Andres Spicher
Ann. Geophys., 41, 55–67, https://doi.org/10.5194/angeo-41-55-2023, https://doi.org/10.5194/angeo-41-55-2023, 2023
Short summary
Short summary
The study of some ionospheric events benefit from the knowledge of how the physics varies over a volume and over time. Examples are studies of aurora or energy deposition. With EISCAT3D, measurements of ion velocity vectors in a volume will be possible for the first time. We present a technique that uses a set of such measurements to estimate electric field and neutral wind. The technique relies on adding restrictions to the estimates. We successfully consider restrictions based on physics.
Chengkun Gan, Jiayu Hu, Xiaomin Luo, Chao Xiong, and Shengfeng Gu
Ann. Geophys., 40, 463–474, https://doi.org/10.5194/angeo-40-463-2022, https://doi.org/10.5194/angeo-40-463-2022, 2022
Short summary
Short summary
We develop a new criterion to determine Es, i.e., when the mean value of the absolute value of the difference between the normalized SNR is greater than 3 times the standard deviation. We show that Es have strong seasonal variations, with the highest occurrence rates in the summer season at midlatitudes mainly located at 90–110 km at 14:00–20:00 LT. The comparison of Es altitudes from radio occultation profiles with ionosonde revealed a large correspondence between both measurement techniques.
Johann Stamm, Juha Vierinen, and Björn Gustavsson
Ann. Geophys., 39, 961–974, https://doi.org/10.5194/angeo-39-961-2021, https://doi.org/10.5194/angeo-39-961-2021, 2021
Short summary
Short summary
Measurements of the electric field and neutral wind in the ionosphere are important for understanding energy flows or electric currents. With incoherent scatter radars (ISRs), we can measure the velocity of the ions, which depends on both the electrical field and the neutral wind. In this paper, we investigate methods to use ISR data to find reasonable values for both parameters. We find that electric field can be well measured down to 125 km height and neutral wind below this height.
Johann Stamm, Juha Vierinen, Juan M. Urco, Björn Gustavsson, and Jorge L. Chau
Ann. Geophys., 39, 119–134, https://doi.org/10.5194/angeo-39-119-2021, https://doi.org/10.5194/angeo-39-119-2021, 2021
Harold K. Knight
Ann. Geophys., 39, 105–118, https://doi.org/10.5194/angeo-39-105-2021, https://doi.org/10.5194/angeo-39-105-2021, 2021
Short summary
Short summary
Comparisons were made of ground-based ionosonde (a type of radar) observations of the ionosphere and satellite-based observations of auroral far-ultraviolet emissions to determine whether a remote sensing algorithm for determining auroral ionospheric electron densities from far-ultraviolet emissions was biased by the presence of proton precipitation, and it was found that there was no such bias.
Alaa A. Elghazouly, Mohamed I. Doma, and Ahmed A. Sedeek
Ann. Geophys., 37, 1039–1047, https://doi.org/10.5194/angeo-37-1039-2019, https://doi.org/10.5194/angeo-37-1039-2019, 2019
Short summary
Short summary
Receiver and satellite differential code biases (DCBs) are one of the main error sources in estimating precise global ionosphere maps (GIMs) from Global Positioning System (GPS) data. This paper introduces a mathematical model for estimating satellite and receiver DCBs from a GPS network written in the MATLAB environment. Our code was tested and compared with Ionosphere Associated Analysis Centers (IAAC) and other researchers' code results. The results show an improvement for estimated DCBs.
Alexander Koustov, Robert Gillies, and Peter Bankole
Ann. Geophys., 36, 1657–1666, https://doi.org/10.5194/angeo-36-1657-2018, https://doi.org/10.5194/angeo-36-1657-2018, 2018
Short summary
Short summary
Clyde River (CLY) SuperDARN radar velocities reflecting plasma flows in the ionosphere are consistent with measurements by the incoherent scatter radar RISR. While agreement is good in the range of RISR velocity magnitudes of 0–700 m s−1, CLY velocities become progressively smaller at faster flows. In one example of strong disagreements between the instruments, by 200 m s−1, the radars monitored strongly sheared flows. Validation of the CLY radar confirms the reliability of SuperDARN operation.
Cited articles
Bilitza, D.: IRI the International Standard for the Ionosphere, Adv. Radio Sci., 16, 1–11, https://doi.org/10.5194/ars-16-1-2018, 2018.
Bremer, J.: Ionospheric trends in mid-latitudes as a possible indicator of the atmospheric greenhouse effect, J. Atmos. Terr. Phy., 54, 1505–1511, 1992.
Bremer, J.: Investigations of long-term trends in the ionosphere with world-wide ionosonde observations*, Adv. Radio Sci., 2, 253–258, https://doi.org/10.5194/ars-2-253-2004, 2004.
Bruinsma, S., Tamagnan, D., and Biancale, R.: Atmospheric density derived from CHAMP/STAR accelerometer observations, Planet. Space Sci., 52, 297–312, https://doi.org/10.1016/j.pss.2003.11.004, 2004.
Burnside, R. G., Herrero, F. A., Meriwether Jr., J. W., and Walker, J. C. G.: Optical Observations of Thermospheric Dynamics at Arecibo, J. Geophys. Res., 86, 5532–5540, 1981.
Digital Ionospheric Database, https://ulcar.uml.edu/DIDBase/, last access: 12 March 2021.
Eastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Codrescu, M., Correira, J. T., Daniell, R. E. , England, S. L., Evans, J. S., Harvey, J., Krywonos, A., Lumpe, J. D., Richmond, A. D., Rusch, D. W., Siegmund, O., Solomon, S. C., Strickland, D. J., Woods, T. N.,Aksnes, A., Budzien, S. A., Dymond, K. F., Eparvier, F. G., Martinis, C. R., and Oberheide, J.: The Global-Scale Observations of the Limb and Disk (GOLD) Mission, Space Sci. Rev., 212, 383, https://doi.org/10.1007/s11214-017-0392-2, 2017.
Gardiner, G. W., Lane, J. A., and Rishbeth, H.: Radio and Space Research at Slough 1920–1981, Radio Electron. Eng., 52, 111–112, 1982.
Griffin, E. M., Aruliah, A. L., McWhirter, I., Yiu, H.-C. I., Charalambous, A., and McCrea, I.: Upper thermospheric neutral wind and temperature measurements from an extended spatial field, Ann. Geophys., 26, 2649–2655, https://doi.org/10.5194/angeo-26-2649-2008, 2008.
GUVI Data Products version 13, http://guvitimed.jhuapl.edu/data_products, last access: 12 March 2021.
King, G. A. M.: Analysis of the F1-F2 transition region, J. Geophys. Res., 66, 2757–2762, 1961a.
King, G. A. M.: The seasonal anomalies in the F region, J. Geophys. Res., 66, 4149–4154, https://doi.org/10.1029/JZ066i012p04149, 1961b.
King, G. A. M.: The validity of the “overlay” technique for analysing the F1–F2 transition, J. Atmos. Terr. Physics, 31, 515–529, 1969.
King, G. A. M.: Seasonal changes in thermospheric composition, J. Atmos. Solar Terr. Phys., 32, 433–437, https://doi.org/10.1016/0021-9169(70)90018-8, 1970.
King, G. A. M. and Lawden, M. D.: Analysing the F-region with overlays, J. Atmos. Terr. Physics, 26, 1273–1280, 1964.
Kusnierkiewicz, D. Y.: An overview of the TIMED spacecraft, John Hopkins APL Tech. Dig., 24, 150–155, 2003.
Lawden, M. D.: Problems associated with overlay analysis of F1-region ionograms, J. Atmos. Terr. Phys., 31, 47–57, 1969.
Meier, R. R., Picone, J. M., Drob, D., Bishop, J., Emmert, J. T., Lean, J. L., Stephan, A. W., Strickland, D. J., Christensen, A. B., Paxton, L. J., Morrison, D., Kil, H., Wolven, B., Woods, T. N., Crowley, G., and Gibson, S. T.: Remote Sensing of Earth's Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature, Earth-Space Sci., 2, 1–37, https://doi.org/10.1002/2014EA000035, 2015.
Meriwether, J. W., Tepley, C. A., Price, S. A., and Hays, P. B.: Remote Ground-Based Observations of Terrestrial Airglow Emissions and Thermospheric Dynamics at Calgary, Alberta, Canada, Opt. Eng., 22, 128–131, 1983.
Mikhailov, A. V., Belehaki, A., Perrone, L., Zolesi, B., and Tsagouri, I., Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method's performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, https://doi.org/10.1051/swsc/2012002, 2012.
Mikhailov, A. V. and Perrone, L.; Geomagnetic control of the midlatitude daytime foF1 and foF2 long-term variations: Physical interpretation using European observations, J. Geophys. Res, 121, 7193–7203, https://doi.org/10.1002/2016JA022716, 2016.
Munro, G. H.: Travelling disturbances in the ionosphere, Proc. Roy. Soc., A202, 208–223, 1950.
Oliver, W. L.: Incoherent scatter radar studies of the daytime middle thermosphere, Ann. Geophys., 35, 121–139, 1979.
Perrone, L. and Mikhailov, A. V.: A New Method to Retrieve Thermospheric Parameters From Daytime Bottom-Side Ne(h) Observations, J. Geophys. Res., 123, 10200–10212, https://doi.org/10.1029/2018JA025762, 2018.
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 1468, https://doi.org/10.1029/2002JA009430, 2002.
Ratcliffe, J. A.: The formation of the ionospheric layers F-1 and F-2, J. Atmos. Terr. Phys., 8, 260–269, 1956.
Rawer, K.: Irregularities and movements in the F-region, J. Atmos. Terr. Phys., 15, 38–42, 1959.
Reinisch, B. W. and Galkin, I. A.: Global ionospheric radio observatory (GIRO), Earth Planets Space, 63, 377–381, https://doi.org/10.5047/eps.2011.03.001, http://spase.info/SMWG/Observatory/GIRO (last access: 12 March 2021), 2011.
Reinisch, B. W. and Huang, X.: Automatic calculation of electron density profiles from digital ionograms, 3, Processing of bottomside ionograms, Radio Sci., 18, 477–492, 1983.
Rishbeth, H.: A greenhouse effect in the ionosphere?, Planet. Space Sci., 38, 945–948, 1990.
Rishbeth, H. and Garriott, O.: An introduction to ionospheric physics, Pergamon Press, London, 1969.
Rishbeth, H. and Kervin, C.: Seasonal changes displayed by F1-layer ionograms, J. Atmos. Terr. Physics, 30, 1657–1665, 1968.
Rishbeth, H. and Setty, C. S. G. K.: The F-layer at sunrise, J. Atmos. Terr. Phys., 20, 263–276, https://doi.org/10.1016/0021-9169(61)90205-7, 1961.
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Atmospheric and Space Science Series), Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9780511551772, 2000.
Scott, C. J., Stamper, R., and Rishbeth, H.: Long-term changes in thermospheric composition inferred from a spectral analysis of ionospheric F-region data, Ann. Geophys., 32, 113–119, https://doi.org/10.5194/angeo-32-113-2014, 2014.
Scott, C. J. and Stamper, R.: Global variation in the long-term seasonal changes observed in ionospheric F region data, Ann. Geophys., 33, 449–455, https://doi.org/10.5194/angeo-33-449-2015, 2015.
Spencer, N. W. and Carignan, G. R.: In Situ Measurements of Thermospheric Composition, Temperature and Winds by Mass Spectrometry, Adv. Space Res., 8, 5107–5117, 1988.
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes, F. J., Macmillan,S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T.: International Geomagnetic Reference Field: the 12th generation, Earth Planets Space, 67, 79, https://doi.org/10.1186/s40623-015-0228-9, 2015.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.2307/2285891, 1968.
Theil, H.: A rank-invariant method of linear and polynomial regression analysis. I, II, III, P. K. Ned. Akad. Wetensc., 53, 386–392, 521–525, 1397–1412, 1950.
Yadav, S., Upadhayaya, A. K., and Das, R. M.: Daytime additional F layer stratification over low-midlatitudestation of the Indian sector under geomagnetic disturbed conditions, J. Geophys. Res., 117, A06320, https://doi.org/10.1029/2011JA017305, 2012.
Yee, J.-H., Talaat, E. R., Christensen, A. B., Killeen, T. L., Russell III, J. M., and Woods, T. N.: TIMED instruments, John Hopkins APL Tech. Dig., 24, 156–164, 2003.
Short summary
The composition of the upper atmosphere has been difficult to measure with localised observations relying on spacecraft, suborbital rockets or measurements of airglow from ground-based observatories. The height profile of ionisation within the neutral upper atmosphere is influenced by the composition of the neutral gas. We present a method for determining the neutral upper-atmosphere composition from measurements of the ionisation profile and compare these with spacecraft measurements.
The composition of the upper atmosphere has been difficult to measure with localised...