the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnetosheath jet evolution as a function of lifetime: global hybrid-Vlasov simulations compared to MMS observations
Minna Palmroth
Savvas Raptis
Jonas Suni
Tomas Karlsson
Lucile Turc
Andreas Johlander
Urs Ganse
Yann Pfau-Kempf
Xochitl Blanco-Cano
Mojtaba Akhavan-Tafti
Markus Battarbee
Maxime Dubart
Maxime Grandin
Vertti Tarvus
Adnane Osmane
Related authors
This study investigates the ionospheric signatures of a Bursty Bulk Flow in Earth’s magnetotail using a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. The results show that a reconnection-driven Bursty Bulk Flow generates vortices that produce field-aligned currents, which map to the ionosphere with a distinct east–west orientation and exhibit a characteristic westward drift. Variations in ionospheric observables are identified as clear signatures of this flow.
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.
This study investigates the ionospheric signatures of a Bursty Bulk Flow in Earth’s magnetotail using a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. The results show that a reconnection-driven Bursty Bulk Flow generates vortices that produce field-aligned currents, which map to the ionosphere with a distinct east–west orientation and exhibit a characteristic westward drift. Variations in ionospheric observables are identified as clear signatures of this flow.
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.