Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability of the lunar semidiurnal tidal amplitudes in the ionosphere over Brazil
Departamento de Física, Universidade Estadual da Paraíba, Campina Grande, Brazil
Fabiano da Silva Araújo
Departamento de Física, Universidade Estadual da Paraíba, Campina Grande, Brazil
Igo Paulino
Unidade Acadêmica de Física, Universidade Federal de Campina Grande, Campina Grande, Brazil
Cristiano Max Wrasse
Divisão de Clima Espacial, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
Lourivaldo Mota Lima
Departamento de Física, Universidade Estadual da Paraíba, Campina Grande, Brazil
Paulo Prado Batista
Divisão de Heliofísica, Ciências Planetárias e Aeronomia, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
Inez Staciarini Batista
Divisão de Heliofísica, Ciências Planetárias e Aeronomia, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
Related authors
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
Atmos. Chem. Phys., 25, 9719–9736, https://doi.org/10.5194/acp-25-9719-2025, https://doi.org/10.5194/acp-25-9719-2025, 2025
Short summary
Short summary
This study explores intense concentric gravity waves (CGWs) based on ground-based and multi-satellite observations over southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convection and enabled by weaker wind fields, these CGWs reached the mesopause and thermosphere. Consistent detection via OI and OH airglow emissions confirms their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025, https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Ângela M. Santos, Christiano G. M. Brum, Inez S. Batista, José H. A. Sobral, Mangalathayil A. Abdu, and Jonas R. Souza
Ann. Geophys., 40, 259–269, https://doi.org/10.5194/angeo-40-259-2022, https://doi.org/10.5194/angeo-40-259-2022, 2022
Short summary
Short summary
Using the Digisonde data this paper shows that the small variation in the geomagnetic activity during low solar activity can affect both the parameter of height and the frequency of the intermediate layer (ILs) over the low-latitude Brazilian sector. The most expressive responses of the ILs to geomagnetic activity were observed during the summer when the height of the ILs suffered a significant decrease with the increase of the magnetic activity magnetic in the first hours of the day.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Cited articles
Abdu, M., Ramkumar, T., Batista, I., Brum, C., Takahashi, H., Reinisch, B., and Sobral, J.: Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere- E- and F-region coupling, J. Atmos. Sol.-Terr. Phy., 68, 509–522,
https://doi.org/10.1016/j.jastp.2005.03.019, 2006. a, b
Abdu, M. A., Brum, C. G., Batista, P. P., Gurubaran, S., Pancheva, D.,
Bageston, J. V., Batista, I. S., and Takahashi, H.: Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development, Earth Planet. Space, 67, 1,
https://doi.org/10.1186/s40623-014-0143-5, 2015. a, b, c
Ahlquist, J. E.: Normal-Mode Global Rossby Waves: Theory and Observations,
J. Atmos. Sci., 39, 193–202,
https://doi.org/10.1175/1520-0469(1982)039<0193:NMGRWT>2.0.CO;2, 1982. a
Chen, Y.-W. and Miyahara, S.: Analysis of fast and ultrafast Kelvin waves
simulated by the Kyushu-GCM, J. Atmos. Sol.-Terr. Phy., 80, 1–11, https://doi.org/10.1016/j.jastp.2012.02.026, 2012. a
Dhanya, R., Gurubaran, S., and Sundararaman, S.: Planetary wave coupling of the mesosphere-lower thermosphere-ionosphere (MLTI) region during deep solar
minimum 2005-2008, Indian J. Radio Space, 41, 271–284, 2012. a
Forbes, J. M.: Planetary Waves in the Thermosphere-Ionosphere System, J. Geomagn. Geoelectr., 48, 91–98, https://doi.org/10.5636/jgg.48.91, 1996. a, b
Forbes, J. M., Zhang, X., and Bruinsma, S. L.: New perspectives on thermosphere tides: 2. Penetration to the upper thermosphere, Earth Planet. Space, 66, 122, https://doi.org/10.1186/1880-5981-66-122, 2014. a
Gan, Q., Yue, J., Chang, L. C., Wang, W. B., Zhang, S. D., and Du, J.: Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere, Ann. Geophys., 33, 913–922, https://doi.org/10.5194/angeo-33-913-2015, 2015. a
Gasperini, F., Forbes, J. M., and Hagan, M. E.: Wave coupling from the lower to the middle thermosphere: Effects of mean winds and dissipation, J.
Geophys. Res.-Space, 122, 7781–7797, https://doi.org/10.1002/2017JA024317, 2017. a
Jacobi, C., Jakowski, N., Pogoreltsev, A., Fröhlich, K., Hoffmann, P., and Borries, C.: The CPW-TEC project: Planetary waves in the middle atmosphere and ionosphere, Adv. Radio Sci., 5, 393–397, https://doi.org/10.5194/ars-5-393-2007, 2007. a
John, S. R. and Kumar, K. K.: Global normal mode planetary wave activity: a
study using TIMED/SABER observations from the stratosphere to the
mesosphere-lower thermosphere, Clim. Dynam., 47, 3863–3881,
https://doi.org/10.1007/s00382-016-3046-2, 2016. a, b
Jonah, O. F., de Paula, E., Muella, M. T. A. H., Dutra, S. L. G., Kherani,
E. A., Negreti, P. M. S., and Otsuka, Y.: TEC variation during high and low
solar activities over South American sector, J. Atmos. Sol.-Terr. Phy., 135, 22–35, https://doi.org/10.1016/j.jastp.2015.10.005, 2015. a, b, c
Laštovička, J.: Forcing of the ionosphere by waves from below,
J. Atmos. Sol.-Terr. Phy., 68, 479–497,
https://doi.org/10.1016/j.jastp.2005.01.018, 2006. a
Lieberman, R. S. and Riggin, D.: High resolution Doppler imager observations of
Kelvin waves in the equatorial mesosphere and lower thermosphere, J.
Geophys. Res.-Atmos., 102, 26117–26130, https://doi.org/10.1029/96JD02902, 1997. a
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343, 1976. a
Makela, J. J., Meriwether, J. W., Lima, J. P., Miller, E. S., and Armstrong,
S. J.: The Remote Equatorial Nighttime Observatory of Ionospheric Regions
Project and the International Heliospherical Year, Earth Moon Planets, 104, 211–226, https://doi.org/10.1007/s11038-008-9289-0, 2009. a
Mo, X. and Zhang, D.: Quasi-10 d wave modulation of an equatorial ionization anomaly during the Southern Hemisphere stratospheric warming of 2002, Ann. Geophys., 38, 9–16, https://doi.org/10.5194/angeo-38-9-2020, 2020. a, b, c
Pancheva, D. and Laštovička, J.: Planetary wave activity in the lower ionosphere during CRISTA I campaign in autumn 1994 (October-−November), Ann. Geophys., 16, 1014–1023, https://doi.org/10.1007/s00585-998-1014-9, 1998. a, b
Pancheva, D., Mitchell, N., Clark, R. R., Drobjeva, J., and Lastovicka, J.: Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20, 1807–1819, https://doi.org/10.5194/angeo-20-1807-2002, 2002. a
Paulino, A., Batista, P., and Clemesha, R.: Lunar tides in the mesosphere and
lower thermosphere over Cachoeira Paulista (22.7∘ S;
45.0∘ W), J. Atmos. Sol.-Terr. Phy.,
78–79, 31–36, https://doi.org/10.1016/j.jastp.2011.04.018, 2012. a
Paulino, A. R., Batista, P. P., Lima, L. M., Clemesha, B. R., Buriti, R. A.,
and Schuch, N.: The lunar tides in the mesosphere and lower thermosphere over
Brazilian sector, J. Atmos. Sol.-Terr. Phy., 133,
129–138, https://doi.org/10.1016/j.jastp.2015.08.011, 2015. a, b
Paulino, A. R., Lima, L. M., Almeida, S. L., Batista, P. P., Batista, I. S.,
Paulino, I., Takahashi, H., and Wrasse, C. M.: Lunar tides in total electron
content over Brazil, J. Geophys. Res.-Space, 122,
7519–7529, https://doi.org/10.1002/2017JA024052, 2017. a, b, c, d
Pedatella, N. M.: Observations and simulations of the ionospheric lunar tide:
Seasonal variability, J. Geophys. Res.-Space, 119, 5800–5806, https://doi.org/10.1002/2014JA020189, 2014. a
Pedatella, N. M. and Forbes, J. M.: Global structure of the lunar tide in
ionospheric total electron content, Geophys. Res. Lett., 37, l06103, https://doi.org/10.1029/2010GL042781, 2010. a
Pedatella, N. M., Liu, H.-L., and Richmond, A. D.: Atmospheric semidiurnal
lunar tide climatology simulated by the Whole Atmosphere Community
Climate Model, J. Geophys. Res.-Space, 117, a06327, https://doi.org/10.1029/2012JA017792, 2012. a
Roberts, J. and Roberts, T. D.: Use of the Butterworth low-pass filter for
oceanographic data, J. Geophys. Res.-Oceans, 83, 5510–5514,
https://doi.org/10.1029/JC083iC11p05510, 1978. a
Scargle, J. D.: Studies in astronomical time series analysis. II.
Statistical aspects of spectral analysis of unevenly spaced data,
Astrophys. J., 263, 835–853, https://doi.org/10.1086/160554, 1982. a
Smith, A. K. and Perlwitz, J.: Middle Atmosphere|Planetary Waves, pp.
1–11, Academic Press, Oxford, https://doi.org/10.1016/B978-0-12-382225-3.00229-2, 2015. a, b
Takahashi, H., Wrasse, C. M., Denardini, C. M., Pádua, M. B., de Paula,
E. R., Costa, S. M. A., Otsuka, Y., Shiokawa, K., Monico, J. F. G., Ivo, A., and Sant'Anna, N.: Ionospheric TEC Weather Map Over South America, Adv. Space Res., 14, 937–949, https://doi.org/10.1002/2016SW001474, 2016.
a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis,
B. Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Yamazaki, Y. and Matthias, V.: Large-Amplitude Quasi-10-Day Waves in the Middle Atmosphere During Final Warmings, J. Geophys. Res.-Atmos., 124, 9874–9892, https://doi.org/10.1029/2019JD030634, 2019. a, b, c
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere...