Articles | Volume 38, issue 2
https://doi.org/10.5194/angeo-38-491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-491-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating the fate of oxygen ion outflow from the high-altitude cusp
Patrik Krcelic
CORRESPONDING AUTHOR
Max-Planck Institute for Solar Systems Research, Göttingen, Germany
Department of Geophysics, Faculty of science, University of Zagreb, Zagreb, Croatia
Stein Haaland
Max-Planck Institute for Solar Systems Research, Göttingen, Germany
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
Lukas Maes
Max-Planck Institute for Solar Systems Research, Göttingen, Germany
Rikard Slapak
EISCAT Scientific Association, Kiruna, Sweden
Audrey Schillings
Swedish Institute for Space Physics, Kiruna, Sweden
Division of Space Technology, Lulea University of Technology, Kiruna, Sweden
Related authors
No articles found.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Audrey Schillings, Herbert Gunell, Hans Nilsson, Alexandre De Spiegeleer, Yusuke Ebihara, Lars G. Westerberg, Masatoshi Yamauchi, and Rikard Slapak
Ann. Geophys., 38, 645–656, https://doi.org/10.5194/angeo-38-645-2020, https://doi.org/10.5194/angeo-38-645-2020, 2020
Short summary
Short summary
The Earth's atmosphere is constantly losing molecules and charged particles, amongst them oxygen ions or O+. Quantifying this loss provides information about the evolution of the atmosphere on geological timescales. In this study, we investigate the final destination of O+ observed with Cluster satellites in a high-altitude magnetospheric region (plasma mantle) by tracing the particles forward in time using simulations. We find that approximately 98 % of O+ escapes the Earth's magnetosphere.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
Lukas Maes, Romain Maggiolo, and Johan De Keyser
Ann. Geophys., 34, 961–974, https://doi.org/10.5194/angeo-34-961-2016, https://doi.org/10.5194/angeo-34-961-2016, 2016
Short summary
Short summary
Ion outflow from the ionospheric regions at the highest latitudes is mainly driven by solar illumination. It is an important factor affecting atmospheric escape and space weather. But this region rotates into and out of the sunlight on a daily and seasonal basis. This creates daily and seasonal variations in the outflow, even with both hemispheres combined. The north–south asymmetry in Earth's magnetic field causes extra variations and asymmetries. This was studied with a simple empirical model.
R. Slapak, H. Nilsson, L. G. Westerberg, and R. Larsson
Ann. Geophys., 33, 301–307, https://doi.org/10.5194/angeo-33-301-2015, https://doi.org/10.5194/angeo-33-301-2015, 2015
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
G. Paschmann, S. Haaland, B. Sonnerup, and T. Knetter
Ann. Geophys., 31, 871–887, https://doi.org/10.5194/angeo-31-871-2013, https://doi.org/10.5194/angeo-31-871-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetosphere–ionosphere interactions
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations
Ionospheric plasma flows associated with the formation of the distorted nightside end of a transpolar arc
Relation between the asymmetric ring current effect and the anti-sunward auroral currents, as deduced from CHAMP observations
Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Motoharu Nowada, Adrian Grocott, and Quan-Qi Shi
Ann. Geophys., 40, 299–314, https://doi.org/10.5194/angeo-40-299-2022, https://doi.org/10.5194/angeo-40-299-2022, 2022
Short summary
Short summary
We report that the ionospheric plasma flow patterns associated with the J-shaped transpolar arc (a type of nightside distorted TPA), detected by the SuperDARN radar, reveal the formation process of the nightside distortion of a TPA. Equatorward flows at the TPA growth point were observed flowing out of the polar cap and then turning toward the pre-midnight main auroral oval along the TPA nightside distortion. These ionospheric flow patterns would cause the distortion at the TPA nightside end.
Hermann Lühr and Yun-Liang Zhou
Ann. Geophys., 38, 749–764, https://doi.org/10.5194/angeo-38-749-2020, https://doi.org/10.5194/angeo-38-749-2020, 2020
Short summary
Short summary
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in the evening sector and reduced around morning. This has been attributed to the asymmetric ring current. Here a new 3D current system is proposed for explaining the asymmetric signal. Anti-sunward net currents at high latitude are connected at their noon and night ends to field-aligned currents that lead the currents to the magnetopause on the dawn and dusk flanks where the current closure occurs.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Cited articles
Andre, M., Crew, G., Peterson, W., Persoon, A., and Pollock, C.: Heating of ion conics in the cusp/cleft, Physics of Space Plasmas, (1989), 203–213, 1990. a
Arvelius, S., Yamauchi, M., Nilsson, H., Lundin, R., Hobara, Y., Rème, H., Bavassano-Cattaneo, M. B., Paschmann, G., Korth, A., Kistler, L. M., and Parks, G. K.: Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS, Ann. Geophys., 23, 1909–1916, https://doi.org/10.5194/angeo-23-1909-2005, 2005. a
Axford, W. I.: The polar wind and the terrestrial helium budget, J.
Geophys. Res. (1896–1977), 73, 6855–6859,
https://doi.org/10.1029/JA073i021p06855,
1968. a
Boudouridis, A., Lyons, L. R., Zesta, E., and Ruohoniemi, J. M.: Dayside
reconnection enhancement resulting from a solar wind dynamic pressure
increase, J. Geophys. Res.-Sp. Phys., 112, A06201,
https://doi.org/10.1029/2006JA012141,
2007. a
Bouhram, M., Malingre, M., Jasperse, J. R., Dubouloz, N., and Sauvaud, J.-A.: Modeling transverse heating and outflow of ionospheric ions from the dayside cusp/cleft. 2 Applications, Ann. Geophys., 21, 1773–1791, https://doi.org/10.5194/angeo-21-1773-2003, 2003. a
Bouhram, M., Klecker, B., Miyake, W., Rème, H., Sauvaud, J.-A., Malingre, M., Kistler, L., and Blăgău, A.: On the altitude dependence of transversely heated O+ distributions in the cusp/cleft, Ann. Geophys., 22, 1787–1798, https://doi.org/10.5194/angeo-22-1787-2004, 2004. a
Burch, J. L.: Rate of erosion of dayside magnetic flux based on a quantitative
study of the dependence of polar cusp latitude on the interplanetary magnetic
field, Radio Sci., 8, 955–961, https://doi.org/10.1029/RS008i011p00955,
1973. a, b, c
Chappell, C. R., Moore, T. E., and Waite Jr., J. H.: The ionosphere as a fully
adequate source of plasma for the Earth's magnetosphere, J.
Geophys. Res.-Sp. Phys., 92, 5896–5910,
https://doi.org/10.1029/JA092iA06p05896,
1987. a
Chappell, C. R., Giles, B. L., Moore, T. E., Delcourt, D. C., Craven, P. D.,
and Chandler, M. O.: The adequacy of the ionospheric source in supplying
magnetospheric plasma, J. Atmos. So.-Terr. Phys.,
62, 421–436, https://doi.org/10.1016/S1364-6826(00)00021-3,
2000. a
Cladis, J. B.: Parallel acceleration and transport of ions from polar
ionosphere to plasma sheet, Geophys. Res. Lett., 13, 893–896,
https://doi.org/10.1029/GL013i009p00893,
1986. a
Daly, P. W.: Structure of the distant terrestrial magnetotail, Adv.
Space Res., 6, 245–257,
https://doi.org/10.1016/0273-1177(86)90041-4,
1986. a
Ebihara, Y., Yamada, M., Watanabe, S., and Ejiri, M.: Fate of outflowing
suprathermal oxygen ions that originate in the polar ionosphere, J.
Geophys. Res.-Sp. Phys., 111, A04219, https://doi.org/10.1029/2005JA011403,
2006. a, b
Engwall, E., Eriksson, A. I., Cully, C. M., André, M., Puhl-Quinn, P. A., Vaith, H., and Torbert, R.: Survey of cold ionospheric outflows in the magnetotail, Ann. Geophys., 27, 3185–3201, https://doi.org/10.5194/angeo-27-3185-2009, 2009. a
ESA: Cluster EDI and CODIF data, available at: https://csa.esac.esa.int/csa-web/#search, last access: 2019. a
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction
The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Georgescu, E., Puhl-Quinn, P., Vaith, H., Chutter, M., Quinn, J., Paschmann,
G., and Torbert, R.: EDI Data Products in the Cluster Active Archive, The
Cluster Active Archive, Studying the Earth's Space Plasma Environment, Astrophysics and Space Science Proceedings, Springer, Dordrecht, 83–95, https://doi.org/10.1007/978-90-481-3499-1_5, 2010. a
Gillies, D. M., St.-Maurice, J.-P., McWilliams, K. A., and Milan, S.:
Global-scale observations of ionospheric convection variation in response to
sudden increases in the solar wind dynamic pressure, J. Geophys.
Res.-Sp. Phys., 117, A04209, https://doi.org/10.1029/2011JA017255,
2012. a
Glocer, A., Tóth, G., Gombosi, T., and Welling, D.: Modeling ionospheric
outflows and their impact on the magnetosphere, initial results, J.
Geophys. Res.-Sp. Phys., 114, A05216, https://doi.org/10.1029/2009JA014053,
2009. a
Grigorenko, E. E., Hoshino, M., Hirai, M., Mukai, T., and Zelenyi, L. M.:
“Geography” of ion acceleration in the magnetotail: X-line versus current
sheet effects, J. Geophys. Res.-Sp. Phys., 114, A03203,
https://doi.org/10.1029/2008JA013811,
2009. a
Gustafsson, G., Boström, R., Holback, B., Holmgren, G., Lundgren, A.,
Stasiewicz, K., Åhlén, L., Mozer, F. S., Pankow, D., Harvey, P.,
Berg, P., Ulrich, R., Pedersen, A., Schmidt, R., Butler, A., Fransen, A.
W. C., Klinge, D., Thomsen, M., Fälthammar, C.-G., Lindqvist, P.-A.,
Christenson, S., Holtet, J., Lybekk, B., Sten, T. A., Tanskanen, P.,
Lappalainen, K., and Wygant, J.: The electric field and wave experiment for
the cluster mission, Space Sci. Rev., 79, 137–156,
https://doi.org/10.1023/A:1004975108657,
1997. a
Haaland, S., Eriksson, A., Engwall, E., Lybekk, B., Nilsson, H., Pedersen, A.,
Svenes, K., André, M., Förster, M., Li, K., Johnsen, C., and
Østgaard, N.: Estimating the capture and loss of cold plasma from
ionospheric outflow, J. Geophys. Res.-Sp. Phys., 117, A07311,
https://doi.org/10.1029/2012JA017679,
2012. a, b, c, d, e
Haaland, S. E., Paschmann, G., Förster, M., Quinn, J. M., Torbert, R. B., McIlwain, C. E., Vaith, H., Puhl-Quinn, P. A., and Kletzing, C. A.: High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence, Ann. Geophys., 25, 239–253, https://doi.org/10.5194/angeo-25-239-2007, 2007. a, b
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Sp. Phys., 110, https://doi.org/10.1029/2004JA010649,
2005. a
Kistler, L. M., Mouikis, C. G., Klecker, B., and Dandouras, I.: Cusp as a
source for oxygen in the plasma sheet during geomagnetic storms, J.
Geophys. Res.-Sp. Phys., 115, A03209, https://doi.org/10.1029/2009JA014838,
2010. a
Kitamura, N., Ogawa, Y., Nishimura, Y., Terada, N., Ono, T., Shinbori, A.,
Kumamoto, A., Truhlik, V., and Smilauer, J.: Solar zenith angle dependence
of plasma density and temperature in the polar cap ionosphere and
low-altitude magnetosphere during geomagnetically quiet periods at solar
maximum, J. Geophys. Res.-Sp. Phys., 116, A08227,
https://doi.org/10.1029/2011JA016631,
2011. a
Laakso, H. and Grard, R.: The electron density distribution in the polar cap:
Its variability with seasons, and its response to magnetic activity, in:
Space Weather Study Using Multipoint Techniques, edited by: Lyu, L.-H.,
vol. 12 of COSPAR Colloquia Series, 193–202, Pergamon,
https://doi.org/10.1016/S0964-2749(02)80218-9,
2002. a
Lennartsson, O. W., Collin, H. L., and Peterson, W. K.: Solar wind control of
Earth's H+ and O+ outflow rates in the 15-eV to 33-keV energy range, J. Geophys. Res.-Sp. Phys., 109, A12212, https://doi.org/10.1029/2004JA010690,
2004. a, b, c, d
Li, K., Haaland, S., Eriksson, A., André, M., Engwall, E., Wei, Y.,
Kronberg, E. A., Fränz, M., Daly, P. W., Zhao, H., and Ren, Q. Y.: On
the ionospheric source region of cold ion outflow, Geophys. Res.
Lett., 39, L18102, https://doi.org/10.1029/2012GL053297,
2012. a, b, c
Liao, J., Kistler, L., Mouikis, C., Klecker, B., Dandouras, I., and Zhang,
J.-C.: Statistical study of O+ transport from the cusp to the lobes with
Cluster CODIF data, J. Geophys. Res.-Sp. Phys., 115, A00J15, https://doi.org/10.1029/2010JA015613,
2010. a
Lindstedt, T., Khotyaintsev, Y. V., Vaivads, A., André, M., Nilsson, H.,
and Waara, M.: Oxygen energization by localized perpendicular electric
fields at the cusp boundary, Geophys. Res. Lett., 37, L09103,
https://doi.org/10.1029/2010GL043117,
2010. a
Lockwood, M., Waite Jr., J. H., Moore, T. E., Johnson, J. F. E., and
Chappell, C. R.: A new source of suprathermal O+ ions near the dayside polar
cap boundary, J. Geophys. Res.-Sp. Phys., 90,
4099–4116, https://doi.org/10.1029/JA090iA05p04099,
1985. a, b
Moore, T. E. and Horwitz, J. L.: Stellar ablation of planetary atmospheres,
Rev. Geophys., 45, RG3002, https://doi.org/10.1029/2005RG000194,
2007. a
NASA: OMNI data, available at: https://cdaweb.gsfc.nasa.gov, last access: 2019. a
Nilsson, H.: Heavy Ion Energization, Transport, and Loss in the Earth's
Magnetosphere, 315–327, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-0501-2_17,
2011. a, b
Nilsson, H., Yamauchi, M., Eliasson, L., Norberg, O., and Clemmons, J.:
Ionospheric signature of the cusp as seen by incoherent scatter radar,
J. Geophys. Res.-Sp. Phys., 101, 10947–10963,
https://doi.org/10.1029/95JA03341,
1996. a
Nilsson, H., Waara, M., Arvelius, S., Marghitu, O., Bouhram, M., Hobara, Y., Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.-A., Dandouras, I., Balogh, A., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano-Cattaneo, M. B., and Korth, A.: Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study, Ann. Geophys., 24, 1099–1112, https://doi.org/10.5194/angeo-24-1099-2006, 2006. a, b
Nilsson, H., Waara, M., Marghitu, O., Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.-A., Dandouras, I., Lucek, E., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano-Cattaneo, M. B., and Korth, A.: An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow, Ann. Geophys., 26, 145–157, https://doi.org/10.5194/angeo-26-145-2008, 2008. a, b, c, d, e, f
Nilsson, H., Engwall, E., Eriksson, A., Puhl-Quinn, P. A., and Arvelius, S.: Centrifugal acceleration in the magnetotail lobes, Ann. Geophys., 28, 569–576, https://doi.org/10.5194/angeo-28-569-2010, 2010. a, b, c
Nilsson, H., Barghouthi, I. A., Slapak, R., Eriksson, A. I., and André,
M.: Hot and cold ion outflow: Spatial distribution of ion heating, J. Geophys. Res.-Sp. Phys., 117, A11201, https://doi.org/10.1029/2012JA017974,
2012. a
Norqvist, P., André, M., Eliasson, L., Eriksson, A. I., Blomberg, L., Lühr,
H., and Clemmons, J. H.: Ion cyclotron heating in the dayside magnetosphere,
J. Geophys. Res.-Sp. Phys., 101, 13179–13193,
https://doi.org/10.1029/95JA03596,
1996. a
Ogawa, Y., Fujii, R., Buchert, S. C., Nozawa, S., and Ohtani, S.: Simultaneous EISCAT Svalbard radar and DMSP observations of ion upflow in the dayside polar ionosphere, J. Geophys. Res., 108, 1101, https://doi.org/10.1029/2002JA009590,
2003. a
Paschmann, G., Melzner, F., Frenzel, R., Vaith, H., Parigger, P., Pagel, U.,
Bauer, O. H., Haerendel, G., Baumjohann, W., Scopke, N., Torbert, R. B.,
Briggs, B., Chan, J., Lynch, K., Morey, K., Quinn, J. M., Simpson, D., Young,
C., Mcilwain, C. E., Fillius, W., Kerr, S. S., Mahieu, R., and Whipple,
E. C.: The electron drift instrument for cluster, Space Sci. Rev.,
79, 233–269, https://doi.org/10.1023/A:1004917512774,
1997. a
Paschmann, G., Quinn, J. M., Torbert, R. B., Vaith, H., McIlwain, C. E., Haerendel, G., Bauer, O. H., Bauer, T., Baumjohann, W., Fillius, W., Förster, M., Frey, S., Georgescu, E., Kerr, S. S., Kletzing, C. A., Matsui, H., Puhl-Quinn, P., and Whipple, E. C.: The Electron Drift Instrument on Cluster: overview of first results, Ann. Geophys., 19, 1273–1288, https://doi.org/10.5194/angeo-19-1273-2001, 2001. a
Pedersen, A., Mozer, F., and Gustafsson, G.: Electric field measurements in a
tenuous plasma with spherical double probes, Geophysical Monograph-American
Geophysical Union, 103, 1–12, 1998. a
Quinn, J. M., Paschmann, G., Torbert, R. B., Vaith, H., McIlwain, C. E., Haerendel, G., Bauer, O., Bauer, T. M., Baumjohann, W., Fillius, W., Foerster, M., Frey, S., Georgescu, E., Kerr, S. S., Kletzing, C. A., Matsui, H., Puhl-Quinn, P., and Whipple, E. C.: Cluster EDI convection measurements across the high-latitude plasma sheet boundary at midnight, Ann. Geophys., 19, 1669–1681, https://doi.org/10.5194/angeo-19-1669-2001, 2001. a
Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras, J., Aoustin,
C., Bouyssou, J., Camus, T., Cuvilo, J., Martz, C., Médale, J. L.,
Perrier, H., Romefort, D., Rouzaud, J., d'Uston, C., Möbius, E., Crocker,
K., Granoff, M., Kistler, L. M., Popecki, M., Hovestadt, D., Klecker, B.,
Paschmann, G., Scholer, M., Carlson, C. W., Curtis, D. W., Lin, R. P.,
McFadden, J. P., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B.,
Baldetti, P., Belluci, G., Bruno, R., Chionchio, G., Di Lellis, A., Shelley,
E. G., Ghielmetti, A. G., Lennartsson, W., Korth, A., Rosenbauer, H., Lundin,
R., Olsen, S., Parks, G. K., McCarthy, M., and Balsiger, H.: The Cluster Ion
Spectrometry (CIS) Experiment, 303–350, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-011-5666-0_12,
1997. a
Seki, K., Elphic, R. C., Hirahara, M., Terasawa, T., and Mukai, T.: On
Atmospheric Loss of Oxygen Ions from Earth Through Magnetospheric Processes,
Science, 291, 1939–1941, https://doi.org/10.1126/science.1058913,
2001. a, b, c
Seki, K., Elphic, R. C., Thomsen, M. F., Bonnell, J., McFadden, J. P., Lund,
E. J., Hirahara, M., Terasawa, T., and Mukai, T.: A new perspective on
plasma supply mechanisms to the magnetotail from a statistical comparison of
dayside mirroring O+ at low altitudes with lobe/mantle beams, J.
Geophys. Res.-Sp. Phys., 107, SMP 7-1–SMP 7-12,
https://doi.org/10.1029/2001JA900122,
2002.
a
Shue, J.-H., Song, P., Russell, C., Steinberg, J., Chao, J., Zastenker, G.,
Vaisberg, O., Kokubun, S., Singer, H., Detman, T. R., and Kawano, H.: Magnetopause
location under extreme solar wind conditions, J. Geophys.
Res.-Sp. Phys., 103, 17691–17700, 1998. a
Slapak, R. and Nilsson, H.: The oxygen ion circulation in the outer terrestrial
magnetosphere and its dependence on geomagnetic activity, Geophys.
Res. Lett., 45, 12669–12676, https://doi.org/10.1029/2018GL079816, 2018. a
Slapak, R., Nilsson, H., Waara, M., André, M., Stenberg, G., and Barghouthi, I. A.: O+ heating associated with strong wave activity in the high altitude cusp and mantle, Ann. Geophys., 29, 931–944, https://doi.org/10.5194/angeo-29-931-2011, 2011. a
Slapak, R., Schillings, A., Nilsson, H., Yamauchi, M., Westerberg, L.-G., and Dandouras, I.: Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: implications for atmospheric escape on evolutionary timescales, Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, 2017. a, b, c, d, e, f, g, h, i, j, k
Tsyganenko, N.: A model of the near magnetosphere with a dawn-dusk asymmetry 1.
Mathematical structure, J. Geophys. Res.-Sp. Phys., 107, https://doi.org/10.1029/2001JA000219,
2002. a
Tsyganenko, N. and Sitnov, M.: Modeling the dynamics of the inner magnetosphere
during strong geomagnetic storms, J. Geophys. Res.-Sp.
Phys., 110, A03208, https://doi.org/10.1029/2004JA010798, 2005. a
Tsyganenko, N. A. and Stern, D. P.: Modeling the global magnetic field of the
large-scale Birkeland current systems, J. Geophys. Res.-Sp.
Phys., 101, 27187–27198, https://doi.org/10.1029/96JA02735,
1996. a
Waara, M., Nilsson, H., Stenberg, G., André, M., Gunell, H., and Rème, H.: Oxygen ion energization observed at high altitudes, Ann. Geophys., 28, 907–916, https://doi.org/10.5194/angeo-28-907-2010, 2010. a
Waara, M., Slapak, R., Nilsson, H., Stenberg, G., André, M., and Barghouthi, I. A.: Statistical evidence for O+ energization and outflow caused by wave-particle interaction in the high altitude cusp and mantle, Ann. Geophys., 29, 945–954, https://doi.org/10.5194/angeo-29-945-2011, 2011. a
Yau, A. W. and André, M.: Sources of Ion Outflow in the High Latitude
Ionosphere, Space Sci. Rev., 80, 1–25, https://doi.org/10.1023/A:1004947203046,
1997. a
Yau, A. W., Shelley, E. G., Peterson, W. K., and Lenchyshyn, L.: Energetic
auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition,
magnetic activity dependence, and long-term variations, J. Geophys. Res.-Sp.
Phys., 90, 8417–8432,
https://doi.org/10.1029/JA090iA09p08417,
1985. a
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from...