Articles | Volume 38, issue 2
Ann. Geophys., 38, 359–372, 2020
Ann. Geophys., 38, 359–372, 2020

Regular paper 20 Mar 2020

Regular paper | 20 Mar 2020

Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017

Nadia Imtiaz et al.

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Storms and substorms
Polar substorm on 7 December 2015: preonset phenomena and features of auroral breakup
Vladimir V. Safargaleev, Alexander E. Kozlovsky, and Valery M. Mitrofanov
Ann. Geophys., 38, 901–918,,, 2020
Short summary
Influence of the Earth's ring current strength on Størmer's allowed and forbidden regions of charged particle motion
Alexander S. Lavrukhin, Igor I. Alexeev, and Ilya V. Tyutin
Ann. Geophys., 37, 535–547,,, 2019
Short summary
Dynamics of a geomagnetic storm on 7–10 September 2015 as observed by TWINS and simulated by CIMI
Joseph D. Perez, James Edmond, Shannon Hill, Hanyun Xu, Natalia Buzulukova, Mei-Ching Fok, Jerry Goldstein, David J. McComas, and Phil Valek
Ann. Geophys., 36, 1439–1456,,, 2018
Short summary

Cited articles

Afraimovich, E. L., Astafyeva, E., and Zhivetiev, I. V.: Solar activity and Global electron content, Dokl. Earth Sci., 409, 921–924, 2006. a
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Y. V., and Zhivetiev, I. V.: Dynamics of global electron content in 1998–2005 derived from global GPS data and IRI modeling, Adv. Space Res., 42, 763–769,, 2007. a
Afraimovich, E. L., Astafyeva, E. I., Oinats, A. V., Yasukevich, Yu. V., and Zhivetiev, I. V.: Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344,, 2008. a
Astafyeva, E., Zakharenkova, I., and Förster, M.: Ionospheric response to the 2015 St. Patrick's Day storm: A global multi-instrumental overview, J. Geophys. Res.-Space, 120, 9023–9037, 2015. a
Balan, N. and Bailey, G. J.: Equatorial plasma fountain and its effect; Possibility of an additional layer, J. Geophys. Res., 100, 21421–21432, 1995. a
Short summary
We study the impact of the geomagnetic storm of 7–9 September 2017 on the low- to mid-latitude ionosphere. The study is based on the analysis of data from the Global Positioning System (GPS) stations and magnetic observatories located at different longitudinal sectors corresponding to the Pacific, Asia, Africa and the Americas during the period 4–14 September 2017. The GPS data are used to derive the global, regional and vertical total electron content (vTEC) in the four selected regions.