Articles | Volume 38, issue 1
https://doi.org/10.5194/angeo-38-179-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-179-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Marion Heublein
CORRESPONDING AUTHOR
Karlsruhe Institute of Technology, Institute of Photogrammetry and Remote Sensing, 76128 Karlsruhe, Germany
Patrick Erik Bradley
Karlsruhe Institute of Technology, Institute of Photogrammetry and Remote Sensing, 76128 Karlsruhe, Germany
Stefan Hinz
Karlsruhe Institute of Technology, Institute of Photogrammetry and Remote Sensing, 76128 Karlsruhe, Germany
Related authors
No articles found.
Markus Hillemann, Robert Langendörfer, Max Heiken, Max Mehltretter, Andreas Schenk, Martin Weinmann, Stefan Hinz, Christian Heipke, and Markus Ulrich
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 137–144, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-137-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-137-2024, 2024
B. Kamm, A. Schenk, P. Yuan, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 153–159, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-153-2023, 2023
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-7-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-7-2022, 2022
M. Rebmeister, A. Schenk, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 341–348, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-341-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-341-2022, 2022
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 7–7, https://doi.org/10.5194/isprs-annals-V-1-2022-7-2022, https://doi.org/10.5194/isprs-annals-V-1-2022-7-2022, 2022
A. Michel, W. Gross, S. Hinz, and W. Middelmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 291–298, https://doi.org/10.5194/isprs-annals-V-2-2022-291-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-291-2022, 2022
M. Evers, A. Thiele, H. Hammer, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 107–114, https://doi.org/10.5194/isprs-annals-V-3-2022-107-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-107-2022, 2022
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-7-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-7-2021, 2021
M. Evers, A. Thiele, H. Hammer, E. Cadario, K. Schulz, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 147–154, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-147-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-147-2021, 2021
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2021, 7–7, https://doi.org/10.5194/isprs-annals-V-1-2021-7-2021, https://doi.org/10.5194/isprs-annals-V-1-2021-7-2021, 2021
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, 7–7, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-7-2020, https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-7-2020, 2020
S. Hinz, R. Q. Feitosa, M. Weinmann, and B. Jutzi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2020, 7–7, https://doi.org/10.5194/isprs-annals-V-1-2020-7-2020, https://doi.org/10.5194/isprs-annals-V-1-2020-7-2020, 2020
M. Hermann, B. Ruf, M. Weinmann, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 357–364, https://doi.org/10.5194/isprs-annals-V-2-2020-357-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-357-2020, 2020
B. Jutzi, M. Weinmann, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 1–3, https://doi.org/10.5194/isprs-annals-IV-1-1-2018, https://doi.org/10.5194/isprs-annals-IV-1-1-2018, 2018
K. Chen, M. Weinmann, X. Sun, M. Yan, S. Hinz, B. Jutzi, and M. Weinmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 29–36, https://doi.org/10.5194/isprs-annals-IV-1-29-2018, https://doi.org/10.5194/isprs-annals-IV-1-29-2018, 2018
R. Gabriel, S. Keller, J. Matthes, P. Waibel, H. B. Keller, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 53–60, https://doi.org/10.5194/isprs-annals-IV-1-53-2018, https://doi.org/10.5194/isprs-annals-IV-1-53-2018, 2018
S. Keller, F. M. Riese, J. Stötzer, P. M. Maier, and S. Hinz
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1, 101–108, https://doi.org/10.5194/isprs-annals-IV-1-101-2018, https://doi.org/10.5194/isprs-annals-IV-1-101-2018, 2018
B. Jutzi, M. Weinmann, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 1–3, https://doi.org/10.5194/isprs-archives-XLII-1-1-2018, https://doi.org/10.5194/isprs-archives-XLII-1-1-2018, 2018
M. Boldt, A. Thiele, K. Schulz, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 59–64, https://doi.org/10.5194/isprs-archives-XLII-1-59-2018, https://doi.org/10.5194/isprs-archives-XLII-1-59-2018, 2018
K. Chen, M. Weinmann, X. Gao, M. Yan, S. Hinz, B. Jutzi, and M. Weinmann
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 65–72, https://doi.org/10.5194/isprs-annals-IV-2-65-2018, https://doi.org/10.5194/isprs-annals-IV-2-65-2018, 2018
M. W. Jahn, P. E. Bradley, M. Al Doori, and M. Breunig
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4-W5, 65–72, https://doi.org/10.5194/isprs-annals-IV-4-W5-65-2017, https://doi.org/10.5194/isprs-annals-IV-4-W5-65-2017, 2017
R. Ilehag, M. Weinmann, A. Schenk, S. Keller, B. Jutzi, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 65–71, https://doi.org/10.5194/isprs-archives-XLII-3-W3-65-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-65-2017, 2017
M. Breunig, A. Borrmann, E. Rank, S. Hinz, T. Kolbe, M. Schilcher, R.-P. Mundani, J. R. Jubierre, M. Flurl, A. Thomsen, A. Donaubauer, Y. Ji, S. Urban, S. Laun, S. Vilgertshofer, B. Willenborg, M. Menninghaus, H. Steuer, S. Wursthorn, J. Leitloff, M. Al-Doori, and N Mazroobsemnani
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W4, 341–352, https://doi.org/10.5194/isprs-archives-XLII-4-W4-341-2017, https://doi.org/10.5194/isprs-archives-XLII-4-W4-341-2017, 2017
M. Weinmann, M. S. Müller, M. Hillemann, N. Reydel, S. Hinz, and B. Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 399–406, https://doi.org/10.5194/isprs-archives-XLII-2-W6-399-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-399-2017, 2017
R. Ilehag, A. Schenk, and S. Hinz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 145–151, https://doi.org/10.5194/isprs-archives-XLII-2-W6-145-2017, https://doi.org/10.5194/isprs-archives-XLII-2-W6-145-2017, 2017
F. Alshawaf, B. Fersch, S. Hinz, H. Kunstmann, M. Mayer, and F. J. Meyer
Hydrol. Earth Syst. Sci., 19, 4747–4764, https://doi.org/10.5194/hess-19-4747-2015, https://doi.org/10.5194/hess-19-4747-2015, 2015
Short summary
Short summary
This work aims at deriving high spatially resolved maps of atmospheric water vapor by the fusion data from Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite Systems (GNSS), and the Weather Research and Forecasting (WRF) model. The data fusion approach exploits the redundant and complementary spatial properties of all data sets to provide more accurate and high-resolution maps of water vapor. The comparison with maps from MERIS shows rms values of less than 1 mm.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Analysis of migrating and non-migrating tides of the Extended Unified Model in the mesosphere and lower thermosphere
Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Sensitivity of GNSS tropospheric gradients to processing options
Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong
An empirical model of the thermospheric mass density derived from CHAMP satellite
Matthew J. Griffith and Nicholas J. Mitchell
Ann. Geophys., 40, 327–358, https://doi.org/10.5194/angeo-40-327-2022, https://doi.org/10.5194/angeo-40-327-2022, 2022
Short summary
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019, https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Short summary
To simulate the vertical propagation of atmospheric waves, experimental data on pressure variations at the Earth's surface are used. These data are associated with the meteorological source. The simulation results have allowed for the first time estimates of the amplitudes of temperature wave disturbances in the upper atmosphere caused by waves from the atmospheric front. The simulations have been performed using the Lomonosov supercomputer.
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Zhaohui Xiong, Bao Zhang, and Yibin Yao
Ann. Geophys., 37, 25–36, https://doi.org/10.5194/angeo-37-25-2019, https://doi.org/10.5194/angeo-37-25-2019, 2019
Short summary
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Cited articles
Aguilera, E., Nannini, M., and Reigber, A.: A data-adaptive compressed sensing
approach to polarimetric SAR tomography of forested areas, IEEE Geosci.
Remote Sens. Lett., 10, 543–547, 2013. a
Alonso, M. T., López-Dekker, P., and Mallorquí, J. J.: A novel
strategy for radar imaging based on compressive sensing, IEEE T.
Geosci. Remote Sens., 48, 4285–4295, 2010. a
Baraniuk, R.: Compressive sensing, IEEE Signal Proc. Mag., 24, 118–120, 2007. a
Bender, M. and Raabe, A.: Preconditions to ground based GPS water vapour tomography, Ann. Geophys., 25, 1727–1734, https://doi.org/10.5194/angeo-25-1727-2007, 2007. a
Bender, M., Dick, G., Wickert, J., Ramatschi, M., Ge, M., Gendt, G., Rothacher,
M., Raabe, A., and Tetzlaff, G.: Estimates of the information provided by
GPS slant data observed in Germany regarding tomographic applications,
J. Geophys. Res.-Atmos., 114, D06303, https://doi.org/10.1029/2008JD011008, 2009. a
Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H.-G., Raabe, A.,
and Tetzlaff, G.: Development of a GNSS water vapour tomography system using
algebraic reconstruction techniques, Adv. Space Res., 47, 1704–1720, https://doi.org/10.1016/j.asr.2010.05.034,
2011a. a
Bender, M., Stosius, R., Zus, F., Dick, G., Wickert, J., and Raabe, A.: GNSS
water vapour tomography–Expected improvements by combining GPS, GLONASS and
Galileo observations, Adv. Space Res., 47, 886–897,
2011b. a
Budillon, A., Evangelista, A., and Schirinzi, G.: Three-dimensional SAR
focusing from multipass signals using compressive sampling, IEEE
T. Geosci. Remote Sens., 49, 488–499, 2011. a
Candès, E. J. and Wakin, M. B.: An introduction to compressive sampling, IEEE
Signal Proc. Mag., 25, 21–30, 2008. a
Davis, J. L., Elgered, G., Niell, A. E., and Kuehn, C. E.: Ground-based
measurement of gradients in the “wet” radio refractivity of air, Radio
Sci., 28, 1003–1018, 1993. a
Ding, N., Zhang, S., Wu, S., Wang, X., Kealy, A., and Zhang, K.: A new approach for GNSS tomography from a few GNSS stations, Atmos. Meas. Tech., 11, 3511–3522, https://doi.org/10.5194/amt-11-3511-2018, 2018. a
Donoho, D. L.: Compressed sensing, IEEE T. Inform. Theory,
52, 1289–1306, 2006. a
Elosegui, P., Ruis, A., Davis, J., Ruffini, G., Keihm, S., Bürki, B., and
Kruse, L.: An experiment for estimation of the spatial and temporal
variations of water vapor using GPS data, Phys. Chem.
Earth, 23, 125–130, https://doi.org/10.1016/S0079-1946(97)00254-1,
1998. a
Feairheller, S. and Clark, R.: Other satellite navigation systems,
Understanding GPS–principles and applications, 2nd Edn., Artech House,
Norwood, 595–634, 2006. a
Flores, A., Ruffini, G., and Rius, A.: 4D tropospheric tomography using GPS slant wet delays, Ann. Geophys., 18, 223–234, https://doi.org/10.1007/s00585-000-0223-7, 2000. a, b, c, d
Grohnfeldt, C., Zhu, X. X., and Bamler, R.: Jointly sparse fusion of
hyperspectral and multispectral imagery, in: IEEE Geoscience and Remote Sensing
Symposium (IGARSS), 4090–4093, 2013 IEEE International, Melbourne, VIC, Australia, 2013. a
Hansen, M. H. and Yu, B.: Model selection and the principle of minimum
description length, J. Am. Stat. Assoc., 96,
746–774, 2001. a
Hirahara, K.: Local GPS tropospheric tomography, Earth Planets Space,
52, 935–939, https://doi.org/10.1186/BF03352308, 2000. a, b
Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E.: GNSS – Global
Navigation Satellite Systems: GPS, GLONASS, Galileo and more, Springer,
Wien, https://doi.org/10.1007/978-3-211-73017-1, 2008. a
Hurter, F. and Maier, O.: Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground, Atmos. Meas. Tech., 6, 3083–3098, https://doi.org/10.5194/amt-6-3083-2013, 2013. a
Jiang, C., Zhang, H., Shen, H., and Zhang, L.: Two-step sparse coding for the
pan-sharpening of remote sensing images, IEEE J. Sel. Top.
Appl., 7, 1792–1805, 2014. a
Li, S. and Yang, B.: A new pan-sharpening method using a compressed sensing
technique, IEEE T. Geosci. Remote Sens., 49, 738–746,
2011. a
Niell, A.: Global mapping functions for the atmosphere delay at radio
wavelengths, J. Geophys. Res.-Sol. Ea., 101, 3227–3246,
1996. a
Nilsson, T. and Elgered, G.: Water vapour tomography using GPS phase
observations: Results from the ESCOMPTE experiment, Tellus A, 59, 674–682, 2007. a
Notarpietro, R., Gabella, M., and Perona, G.: Tomographic reconstruction of
neutral atmospheres using slant and horizontal wet delays achievable through
the processing of signal observed from small GPS networks, Ital. J. Remote
Sens., 40, 63–74, 2008. a
Perler, D.: Water vapor tomography using global navigation satellite systems,
PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich,
No. 20012, 2011. a
Potter, L. C., Ertin, E., Parker, J. T., and Cetin, M.: Sparsity and
compressed sensing in radar imaging, P. IEEE, 98,
1006–1020, 2010. a
Pruente, L.: Application of compressed sensing to SAR/GMTI-data, in:
Synthetic Aperture Radar (EUSAR), 2010 8th European Conference on, 1–4,
VDE, Aachen, Germany, 2010. a
Rauhut, H.: Compressive sensing and structured random matrices, in: Theoretical
foundations and numerical methods for sparse recovery, 9, 1–92, Walter de Gruyter https://doi.org/10.1515/9783110226157.1, 2010. a
Rohm, W.: The precision of humidity in {GNSS} tomography, Atmos.
Res., 107, 69–75,
https://doi.org/10.1016/j.atmosres.2011.12.008,
2012. a, b
Rohm, W.: The ground GNSS tomography–unconstrained approach, Adv.
Space Res., 51, 501–513, 2013. a
Rohm, W., Zhang, K., and Bosy, J.: Limited constraint, robust Kalman filtering for GNSS troposphere tomography, Atmos. Meas. Tech., 7, 1475–1486, https://doi.org/10.5194/amt-7-1475-2014, 2014. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang,
W., and Powers, J. G.: A description of the advanced research WRF version 2,
Tech. rep., National Center For Atmospheric Research Boulder Co Mesoscale and
Microscale Meteorology Div, Tech. Note TN-475+STR, https://doi.org/10.5065/D6DZ069T, 2005. a
Song, S., Zhu, W., Ding, J., and Peng, J.: 3D water-vapor tomography with
Shanghai GPS network to improve forecasted moisture field, Chinese Sci.
Bull., 51, 607–614, https://doi.org/10.1007/s11434-006-0607-5, 2006. a
Troller, M.: GPS based determination of the integrated and spatially
distributed water vapor in the troposphere, Vol. 67, ETH Zurich, Zurich, 2004. a
Xia, P., Cai, C., and Liu, Z.: GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles, Ann. Geophys., 31, 1805–1815, https://doi.org/10.5194/angeo-31-1805-2013, 2013.
a
Zhao, Q., Yao, Y., Cao, X., and Yao, W.: Accuracy and reliability of
tropospheric wet refractivity tomography with GPS, BDS, and GLONASS
observations, Adv. Space Res., 63, 2836–2847, 2019. a
Zhu, X. X. and Bamler, R.: Tomographic SAR inversion by L1-norm
regularization – The compressive sensing approach, IEEE T.
Geosci. Remote Sens., 48, 3839–3846, 2010. a
Zhu, X. X. and Bamler, R.: A sparse image fusion algorithm with application to
pan-sharpening, IEEE T. Geosci. Remote Sens., 51,
2827–2836, 2013. a
Zhu, X. X. and Bamler, R.: Superresolving SAR tomography for multidimensional
imaging of urban areas: Compressive sensing-based TomoSAR inversion, IEEE
Signal Proc. Mag., 31, 51–58, 2014. a
Zhu, X. X., Grohnfeldt, C., and Bamler, R.: Exploiting joint sparsity for
pansharpening: The J-SparseFI algorithm, IEEE T. Geosci.
Remote Sens., 54, 2664–2681, 2016. a