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Abstract. In this work, the effect of the observing geome-
try on the tomographic reconstruction quality of both a reg-
ularized least squares (LSQ) approach and a compressive
sensing (CS) approach for water vapor tomography is com-
pared based on synthetic Global Navigation Satellite System
(GNSS) slant wet delay (SWD) estimates. In this context,
the term “observing geometry” mainly refers to the number
of GNSS sites situated within a specific study area subdi-
vided into a certain number of volumetric pixels (voxels) and
to the number of signal directions available at each GNSS
site. The novelties of this research are (1) the comparison of
the observing geometry’s effects on the tomographic recon-
struction accuracy when using LSQ or CS for the solution
of the tomographic system and (2) the investigation of the
effect of the signal directions’ variability on the tomographic
reconstruction. The tomographic reconstruction is performed
based on synthetic SWD data sets generated, for many sam-
ples of various observing geometry settings, based on wet re-
fractivity information from the Weather Research and Fore-
casting (WRF) model. The validation of the achieved results
focuses on a comparison of the refractivity estimates with
the input WRF refractivities. The results show that the rec-
ommendation of Champollion et al. (2004) to discretize the
analyzed study area into voxels with horizontal sizes compa-
rable to the mean GNSS intersite distance represents a good
rule of thumb for both LSQ- and CS-based tomography solu-
tions. In addition, this research shows that CS needs a variety
of at least 15 signal directions per site in order to estimate
the refractivity field more accurately and more precisely than
LSQ. Therefore, the use of CS is particularly recommended
for water vapor tomography applications for which a high
number of multi-GNSS SWD estimates are available.

1 Introduction

In this paper, we intend to determine the three-dimensional
(3-D) atmospheric water vapor distribution for each point in
time. This adds further essential information to the spatio-
temporal analyses of two-dimensional (2-D) water vapor
fields commonly used in weather forecasting and climate re-
search. In addition, atmospheric water vapor delays the mi-
crowave signal propagation within the atmosphere and thus
represents an error source in, e.g., Global Navigation Satel-
lite System (GNSS) and Interferometric Synthetic Aperture
Radar (InSAR) observations. Therefore, a precise knowl-
edge of the water vapor field, for example, is required for
accurate deformation monitoring using InSAR (Hansen and
Yu, 2001). However, the atmospheric water vapor distribu-
tion is difficult to model because it is highly variable in
time and space. Several approaches exist for reconstruct-
ing the 3-D tomographic water vapor reconstruction using
one-dimensional (1-D) GNSS slant wet delays (SWDs); see
Sect. 2.

One of the main limiting factors in water vapor tomo-
graphies consists of the point-wise GNSS observing geom-
etry, which causes an ill-conditioned inverse tomographic
model that needs to be regularized. Yet, even after regular-
ization, the observing geometry composed, e.g., of the num-
ber and the geographic distribution of the GNSS sites, the
SWD signal directions, and the voxel discretization still af-
fect the quality of the tomographic solution. This work there-
fore meets the challenge of comparing the observing geome-
try’s effect on a GNSS-based water vapor tomography solved
by means of least squares (LSQ) or by means of compressive
sensing (CS). By investigating the observing geometry’s ef-
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fect on the LSQ and CS solution strategies, the differences
between the LSQ solution and a CS solution approach ben-
efiting from the signal’s sparsity in an appropriate transform
domain for regularization are better understood, and recom-
mendations can be given for future water vapor tomography
campaigns and the processing of their measurements. Based
on synthetic data sets deduced from the Weather Research
and Forecasting (WRF) model described in Skamarock et al.
(2005), the presented work answers the research question of
(1) to what extent the rule of thumb of Champollion et al.
(2004), derived for LSQ and recommending a voxel size
corresponding to the mean GNSS intersite distance, can be
transferred from an LSQ solution to a CS solution. In ad-
dition, this research investigates (2) in which settings CS is
able to more accurately and more precisely reconstruct the
tomographic water vapor field than LSQ and (3) to what
extent multi-GNSS SWD observations improve the tomo-
graphic solution obtained by means of LSQ or CS when com-
pared to solutions obtained from SWDs originating from the
Global Positioning System (GPS) only.

2 Related work

Current water vapor tomographies can be distinguished, e.g.,
based on the methodology and the data sets applied for solv-
ing the tomographic model. The tomographic model is com-
monly established based on the directions along which space-
geodetic SWD estimates are acquired and based on a dis-
cretization of the investigated atmospheric volume into vol-
umetric pixels (voxels), e.g., of constant refractivity. The ex-
isting tomography solution approaches applied to such a dis-
cretized atmosphere are subdivided into iterative and non-
iterative techniques. Bender et al. (2011a) propose different
iterative algebraic reconstruction techniques (ARTs), while
Hirahara (2000), Flores et al. (2000), Champollion et al.
(2004), Troller (2004), Song et al. (2006), Notarpietro et al.
(2008), and Rohm (2013) apply different non-iterative meth-
ods for solving the tomographic system using an LSQ adjust-
ment. Thanks to its good capability to estimate dynamically
changing parameters, Flores et al. (2000), Gradinarsky and
Jarlemark (2004), and Rohm et al. (2014) choose a Kalman
filter approach. Hirahara (2000) proposes a damped least
squares solution known from seismic tomography to solve
the tomographic problem. Xia et al. (2013) combine iterative
and non-iterative techniques. Instead of using voxels in wa-
ter vapor tomographies with a small number of GNSS sites,
Ding et al. (2018) discretize the tomographic field based on
the perimeter of the tomographic boundary on the plane and
based on meshing techniques. They then determine tomo-
graphic fields by means of fitting the real distribution of
GNSS signals on different tomographic planes at different
tomographic epochs.

In addition to slant wet delay estimates from the GNSS,
Hurter and Maier (2013) introduce wet refractivity profiles

from radio occultation and radiosonde observations into a
combined least squares collocation. Rather than using slant
wet delay estimates as input observations, Nilsson and El-
gered (2007) apply a solution that relies directly on GPS
phase observations.

Independently of the reconstruction strategy, due to the
point-wise GNSS observing geometry, the tomographic sys-
tem of equations is usually ill posed and needs to be regu-
larized, e.g., (i) by constraining the tomographic system by
means of pseudo observations, (ii) by introducing additional
observations from models, from simulations, or from other
sensors, or (iii) by decreasing the number of voxels crossed
by no rays at all.

Both Flores et al. (2000) and Gradinarsky and Jarlemark
(2004) regularize the solution by means of adding horizontal
and vertical smoothing constraints to the tomographic system
and by means of introducing a boundary constraint assuming
the refractivity to approach zero above a certain height. Al-
ternatively, as proposed in Elosegui et al. (1998), the refrac-
tivity field can be assumed to decrease exponentially with
increasing height. Yet, while regularizing the solution signif-
icantly, both geometric constraints and the exponential de-
cay usually are not able to accurately model the real atmo-
spheric state. As an alternative to using horizontal and ver-
tical constraints relying on physical approximations to the
atmospheric behavior, the work in Heublein et al. (2018)
and Heublein (2019) exploits the signal’s sparsity in a par-
ticular, predefined transform domain as prior knowledge for
regularizing the tomographic system in order to then recon-
struct the signal using an L1-norm minimization. Similarly,
CS and sparse reconstruction are applied here for the tomo-
graphic reconstruction of the 3-D water vapor field, and the
CS solution to water vapor tomography is compared to a so-
lution obtained using a classical LSQ approach. Initially pre-
sented by Candès (2006), Donoho (2006), Baraniuk (2007),
and Candès and Wakin (2008) for the image or signal recov-
ery from a number of samples below the desired resolution or
the Nyquist rate, CS has been, since then, applied to many re-
mote sensing problems in which sparse signals occur. For ex-
ample, Potter et al. (2010) and Alonso et al. (2010) describe
the use of CS for synthetic aperture radar (SAR) imaging,
Pruente (2010) applies CS for ground-moving target identifi-
cation, Zhu and Bamler (2010), Budillon et al. (2011), Aguil-
era et al. (2013), and Zhu and Bamler (2014) apply CS to
SAR tomography, and Li and Yang (2011), Zhu and Bam-
ler (2013), Grohnfeldt et al. (2013), Jiang et al. (2014), and
Zhu et al. (2016) use CS for pan-sharpening and hyperspec-
tral image enhancement. When compared to classical LSQ
adjustments usually applying L2-norm regularizations, com-
pressive sensing and sparse reconstruction based on a small
number of measurements led to promising results.

However, compressive sensing only yields encouraging re-
sults if the input data acquisition – corresponding, in water
vapor tomography, to the determination of SWD estimates –
fulfills certain prerequisites. For general applications of CS,
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Rauhut (2010), e.g., states that randomness in the acquisi-
tion step helps in utilizing the minimum number of mea-
surements. When reconstructing images based on frequency
data, Candès (2006), e.g., alternatively recommend randomly
measuring frequency coefficients such that sparse objects are
sensed by taking as few measurements as possible. For CS-
based water vapor tomography approaches, no explicit re-
quirements for acquiring the SWD or for designing advanta-
geous observing geometry settings have been established so
far.

For LSQ, Champollion et al. (2004) state that the optimal
horizontal size of a voxel should correspond to the mean in-
tersite distance between the used GNSS sites. Given a certain
cutoff elevation angle, the height layers’ thicknesses in their
approach should be defined such that signals received at a
GNSS site situated within a voxel’s center are able to cross
neighboring voxels. Due to the small wet refractivity values
in the upper layers and in order to make the tomographic so-
lutions less sensitive to errors in the input data, Rohm (2012)
recommends increasing the height layer thicknesses with in-
creasing altitude. Bender and Raabe (2007) and Bender et al.
(2009) estimate the spatial distribution of the geometric in-
tersection points between different ray paths in order to com-
pute the information density contained in a given set of GPS
signals. They then use this information as a precondition for
an optimal tomographic reconstruction and in order to iden-
tify regions that are well covered by GPS slant paths. Al-
though Bender et al. (2011b) and Zhao et al. (2019) state
that changing the observing geometry by combining multi-
GNSS observations instead of GPS-only observations does
not substantially improve the reconstruction quality, Rohm
(2012) realizes that the uncertainty of the tomographic solu-
tion is largely influenced by the mathematical properties of
the design matrix, depending itself on the observing geome-
try. With the aim of giving advice for the installation of new
permanent sites and for the solution of future water vapor
tomographies, this work therefore investigates the observing
geometry’s effect on the quality of both an LSQ solution and
a CS solution to the tomographic system.

3 Methodology

In order to analyze the observing geometry’s effect on the
quality of the LSQ and CS solutions to water vapor tomogra-
phy, different observing geometry settings are defined. Based
on synthetic SWD estimates derived from WRF, 3-D water
vapor distributions are reconstructed for each of the defined
observing geometry settings using both LSQ and CS. The
quality of the LSQ and CS solutions to water vapor tomogra-
phy is then compared with respect to the respective observing
geometry settings.

3.1 Tomographic model

For tomography using GNSS SWDs, Flores et al. (2000) in-
troduce the functional model

SWDi, cont = 10−6
·

∫
spi

Nwet dl, (1)

where SWDi, cont stands for the integrated slant wet delay
observations between a certain satellite and a certain GNSS
site and dl is a differential along the slant ray path. As in
Heublein et al. (2018) and Heublein (2019), the variable spi
is the ith slant ray path, i.e., the slant ray path of the radio-
wave signal between a certain satellite and a certain receiver.
The variable Nwet contains the wet refractivity along this
path. The index i attains the values

i ∈ N with 1≤ i ≤N, (2)

whereN corresponds to the number of observations available
between any receiver and any satellite. When tomographi-
cally reconstructing the wet refractivity, however, the contin-
uous functional model from Eq. (1) is usually replaced by a
discrete functional model:

SWDi, disc = 10−6
·

L∑
j=1

Nwet j · dij . (3)

That is, the 3-D water vapor distribution is discretized into
L= P ×Q×K voxels in longitude, latitude, and height, as-
suming a constant refractivity value for each voxel. As in
Heublein et al. (2018) and Heublein (2019), in this work,
a uniform voxel discretization is selected in the horizontal
directions, while the voxel sizes in the vertical direction in-
crease with increasing height. Horizontally, the voxels are
limited by constant longitudes and latitudes. In the vertical
direction, the voxels are separated by layers of constant el-
lipsoidal height.

As in Heublein et al. (2018) and Heublein (2019), sum-
marizing all observations SWDi, disc in an observation vector
ydata ∈ RN×1, all unknown refractivities Nwet j for

j ∈ N with 1≤ j ≤ L (4)

in a parameter vector x ∈ RL×1, and all distances dij in a de-
sign matrix 8data ∈ RN×L, the discrete tomographic system
from Eq. (3) can be rewritten as

ydata =8data · x, (5)

with

8data(i,j)=

{
dij if signal i crosses voxel j,
0 otherwise. (6)

As each signal only passes a small subsection of the study
area, most entries of the matrix 8data are zero and only a few
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matrix elements are non-zero (e.g., only about 5 % of the en-
tries of 8data are non-zero in the case of an about 95×99 km2

large study area subdivided into 5×5×5 voxels, consisting of
seven GNSS sites and 10 signals per site). For voxels that are
not crossed by any signals, 8data has a zero column. There-
fore, the tomographic model and the mathematical properties
of the design matrix largely depend on the observing geom-
etry settings described in Sect. 3.3.

3.2 Solution of the inverse tomographic model using
LSQ or CS

The LSQ solution to Eq. (5) is derived by solving the mini-
mization problem

x̂ = argmin
x

{∥∥ydata−8data · x
∥∥2

2︸ ︷︷ ︸
data fidelity term

+

3∑
t=1

02
constraintst ·

∥∥yconstraintst −8constraintst · x
∥∥2

2︸ ︷︷ ︸
regularization constraints and prior knowledge

}
, (7)

regularized by means of t = 3 regularization terms, namely
by horizontal and vertical smoothing constraints as well as
by prior knowledge from surface meteorology. That is, the
wet refractivity at the surface is computed from in situ ob-
servations of pressure, temperature, and dew point temper-
ature at a single weather site within the study area. As de-
scribed in Heublein et al. (2018), the horizontal smoothing
constraints assuming the refractivity of a voxel (a,b,k) to
equal the weighted mean refractivity of the surrounding vox-
els (p,q,k) with voxel indices p 6= a and q 6= b within the
same height layer k are defined by

Nweta,b,k =
∑
p,q

wp−a,q−b ·Nwetp,q,k . (8)

The weights can, e.g., be derived using inverse distance
weighting:

wp−a,q−b =


1

dp−a,q−b∑
p,q

1
dp−a,q−b

if (a,b) 6= (p,q),

−1 if (a,b)= (p,q),
(9)

with distances dp−a,q−b between the center of voxel (p,q)
and the center of voxel (a,b) of the considered kth height
layer.

Moreover, Davis et al. (1993) state that an average refrac-
tivity profile can be approximated assuming the refractivity
to exponentially decrease with height:

Nwet(hk)=Nwet(h0) · exp
(
−
hk −h0

Hscale

)
. (10)

The variable hk is the height of the kth layer, h0 stands
for some reference height at which the refractivity equals

Nwet(h0), and Hscale represents the scale height of the lo-
cal troposphere. As Hscale is essential for defining an ex-
ponential decay with height, its value is determined within
the solution of the tomographic system from a set of real-
istic values for Hscale between 1000 and 2000 m. Both the
weights for the horizontal and vertical smoothing constraints
and for the prior knowledge from surface meteorology are
determined with respect to the data fidelity term using the
place holder trade-off parameter 02

constraint in Eq. (7). The se-
lection of the trade-off parameters from a certain number of
logarithmically scaled possible trade-off parameters and the
selection ofHscale are described in Heublein et al. (2018) and
Heublein (2019).

When aiming at a tomographic reconstruction of atmo-
spheric water vapor by means of compressive sensing, the
parameters x are sparsely represented in some transform do-
main

x =9 · s (11)

as sparse parameters s. Estimates ŝ for these sparse parame-
ters are obtained by

ŝ = argmin
s

{
‖y−8 ·9 · s‖22︸ ︷︷ ︸

data fidelity term

+ 02
CS · ‖s‖1︸ ︷︷ ︸

L1-norm regularization

+02
constraints ·

∥∥yconstraints−8constraints ·9 · s
∥∥2

2︸ ︷︷ ︸
prior knowledge from surface meteorology

}
, (12)

as described in Heublein et al. (2018) and Heublein (2019).
Instead of adding horizontal and vertical constraints to the
data fidelity term as in Eq. (7), an L1-norm regularization
term is introduced into the CS solution to promote sparse
solutions for s, as described in Heublein et al. (2018) and
Heublein (2019). The L1-norm minimization of the sparse
parameters reduces the solution space. The wet refractivity
estimates x̂ are then reconstructed using

x̂ =9 · ŝ, (13)

with a dictionary 9 ∈ RL×M . As in Heublein et al. (2018)
and Heublein (2019), the dimension M of the parameters
s ∈ RM×1 in the transform domain varies with the number
of base functions or atoms in 9. Similarly to Heublein et al.
(2018) and Heublein (2019), we assert that a sparse repre-
sentation of the refractivity distribution can be obtained by
means of, e.g., a dictionary composed of Kronecker products
of inverse discrete cosine transform (iDCT) letters in lon-
gitudinal and latitudinal directions and of Euler letters and
Dirac letters in the height direction. When thinking of lan-
guages, an atom would stand for a word within a dictionary.
Comparably to a word composed of different letters within
a language dictionary, each atom results from the Kronecker
product of smaller items, namely letters, within the dictio-
nary for sparse representation. That is, for each column, i.e.,
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line, of the 3-D wet refractivity signal, a Kronecker prod-
uct of the 1-D letters along the longitudinal, latitudinal, and
height directions is computed. In the longitudinal and lati-
tudinal directions, iDCT letters will represent horizontal re-
fractivity variations. The Euler letters model an exponential
refractivity decay with height, and the Dirac letters describe
deviations from a decay described by a linear combination of
Euler letters.

3.3 Characteristics of the study area and observing
geometry settings

In Sect. 4, tomographic solutions obtained based on a high
number of different observing geometry settings are com-
pared. The observing geometry settings result from (i) a fixed
voxel discretization, (ii) 7 to 32 sites, (iii) 5 to 20 signal
directions per site, and (iv) 48 signal direction samples per
number of sites and signals. Champollion et al. (2004) rec-
ommend (i) horizontal voxel sizes for an LSQ solution to
water vapor tomography greater than or equal to the mean
intersite distance between the available GNSS sites, i.e.,
voxel sizes greater than or equal to about 37× 37 km2 or
to about 17× 17 km2 in the case of 7 or 32 uniformly dis-
tributed GNSS sites within the investigated study area of
about 95× 99 km2 in size. In this work, the study area is
discretized into 5× 5× 5 voxels of horizontal sizes of about
19× 20 km2. In the vertical direction, five height layers are
distinguished. With increasing height, the height layer thick-
nesses increase from 1300 up to 2900 m. The lowest layer’s
thickness is set to 1300 m in order to ensure at least for sig-
nals with very low elevation angles that a signal arriving at
the center of a voxel is able to pass the horizontally neigh-
boring voxel within the same height layer. This is only pos-
sible if the minimum thickness 1dlmin of the height layers is
related to the horizontal voxel size 1hz= 20km and to the
cutoff elevation angle εcut = 7◦ by means of

1dlmin =
1
2
·1hz · tanεcut. (14)

The (ii) minimum number of seven sites originates from
the real GNSS Upper Rhine Graben (URG) network site dis-
tribution within the analyzed study area. The maximum num-
ber of sites is chosen such that the rule of thumb of Cham-
pollion et al. (2004), introduced in Sect. 2, is clearly ful-
filled. The horizontal position of the synthetic GNSS sites
corresponds, for seven sites, to the position of real GNSS
sites within the analyzed study area. The horizontal posi-
tion of the additionally defined synthetic GNSS sites is cho-
sen such that they are uniformly distributed within the study
area. The vertical position of the synthetic GNSS sites cor-
responds to the height of the WRF digital elevation model at
the horizontal position of the sites. The (iii) number of signal
directions per site is motivated by the GPS or by a multi-
GNSS orbit geometry. According to Feairheller and Clark
(2006), the Global’naya Navigatsionnaya Sputnikova Sis-

tema (GLONASS) constellation consists of 21 active plus 3
spare satellites on three orbital planes inclined by 64.8◦ with
respect to the Equator. In contrast, Hofmann-Wellenhof et al.
(2008) describe the GPS orbit constellation as consisting of
21 satellites plus 3 spares on six orbital planes inclined by
55◦ with respect to the Equator and the Galileo orbit constel-
lation as consisting of 27 operational plus 3 spare satellites
on three planes inclined by 56◦ with respect to the Equator.
Therefore, five signal directions and five visible satellites cor-
respond to a pessimistic GPS setting, e.g., with site-specific
shadowing. Eight signal directions per site are here consid-
ered to be a typical GPS setting at a GNSS permanent site
(there may even be up to 12 observations for GPS-only), at
which about 30 % of the total number of GPS satellites is vis-
ible at a time. Similarly, a total number of 20 signal directions
per site corresponds to a visibility of about 30 % of the total
number of satellites at a time within a multi-GNSS constel-
lation composed of GPS, GLONASS, and Galileo. Similarly,
observation of the BeiDou Navigation Satellite System could
also be used in order to increase the number of signal direc-
tions in tomography applications. For each of the mentioned
numbers of sites and numbers of visible satellites, 48 signal
direction samples are defined. Given the GPS repeat cycle of
about 1 d, the number of 48 signal direction samples is cho-
sen in order to emulate about half-hourly orbit samples. Us-
ing the orbit characteristics mentioned above, such synthetic
half-hourly satellite positions are approximated by means of
circular orbits.

For each of the described observing geometry settings,
synthetic SWD observations as input for the tomographic
system are deduced from one single WRF simulation cov-
ering an about 200 km× 200 km large area centered around
the longitude and latitude (λ, ϕ)= (8.15, 49.15◦) at a 900m
horizontal resolution. The vertical resolution increases with
height, ranging from about 50 to about 500 m. As schemati-
cally illustrated in Fig. 1, for each synthetic GNSS site, this
is done by means of averaging the refractivity information of
all WRF cells situated within the defined tomographic vox-
els, a direct ray tracing within these tomographic voxels, and
adding together the SWD along each signal direction within
the tomographic voxels using Eq. (3). As the voxels are lim-
ited by ellipsoidal upper and lower borders, the ray tracing is
performed according to Perler (2011).

The horizontal distribution of the synthetic GNSS sites
within the URG study area is shown in Fig. 2. The signal di-
rections result from selecting at random the defined number
of signal directions from a synthetic multi-GNSS orbit con-
stellation composed of GPS, GLONASS, and Galileo. Both
signals entering the study area at its top and on its side are
included.

From WRF, simulations of water vapor mixing ratio, tem-
perature, pressure, and geopotential height are available at
a 900 m horizontal resolution for generating the synthetic
GNSS SWDs within the 95× 99 km2 large study area situ-
ated in the URG as shown in Fig. 2. The topography within
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Figure 1. Schematic illustration of the generation of synthetic
GNSS SWDs according to Heublein (2019): within each tomo-
graphic voxel (grey), the WRF refractivities of all those WRF cells
(blue) situated within that voxel are averaged. A direct ray tracing
along the considered signal direction then yields the SWD intro-
duced into the tomographic system.

Figure 2. Distribution of the 7 GNSS permanent sites (blue squares)
as well as of the 5 to 25 additional, synthetic sites (black symbols)
within the URG study area. The additional, synthetic sites are dis-
tributed within a grid that uniformly covers the study area. Trian-
gles, pentagons, hexagons, diamonds, and circles represent the first,
second, third, fourth, and fifth group of five additional sites each.

the Rhine Valley is flat. Height differences mainly occur at
the foot of the Black Forest mountain range. The height dif-
ference between the highest and lowest synthetic GNSS sites
used for this study is about 494 m.

4 Results

For the most humid acquisition date (27 June 2005) for which
WRF simulations were provided for this research and for
an exemplary voxel in the lower middle of the lowest voxel
layer, Fig. 3 shows that variations in the SWD signal direc-
tions available within the tomographic system cause varia-
tions in the estimated refractivities. The magnitudes of the
absolute wet refractivity values during the analyzed weather

conditions range from 0 to 74 ppm. As variations in the sig-
nal directions imply a change in the observed atmospheric
volume, these variations in the estimated refractivities seem
obvious. Yet, Fig. 3 illustrates that the variations in the re-
fractivity estimates vary with the selected solution strategy.
When considering many sites and many signal directions per
site (e.g., at least 27 sites and at least 15 signal directions),
the difference between the CS refractivity estimates and the
WRF refractivity of the considered voxel approaches zero
for most samples. However, e.g., for 27 sites and 20 signal
directions per site, there are some samples in which the CS-
based refractivity estimate differs from the WRF refractivity
by up to 3.3 ppm. That is, for many signal directions, CS is
able to accurately and precisely reconstruct the voxel’s re-
fractivity, but for some signal directions, the voxel’s refrac-
tivity estimate does not match well with the voxel’s valida-
tion refractivity from WRF. In contrast, in the case of few
sites and few signal directions per site (e.g., 12 sites and 10
signal directions per site), LSQ yields refractivity estimates
differing from −5.9 to −0.7 ppm from the WRF refractivity,
while the CS refractivity estimates differ much more from the
WRF refractivity (differences of−42.9 to 26.9 ppm). Conse-
quently, when investigating the observing geometry’s effect
on the quality of the tomographic reconstruction, the cho-
sen solution strategy as well as the effect of varying signal
directions should be taken into account. Therefore, in this
research, a representative set of 48 half-hourly samples of
synthetic GNSS orbits is considered in order to analyze the
observing geometry’s effect on the tomographic reconstruc-
tion quality.

As expected, an increased number of sites and an increased
number of signal directions per site, in general, decrease the
mean of the absolute difference (called mean difference in
the following) and the standard deviation of the difference
between estimated refractivities and WRF refractivities. Yet,
as shown in Fig. 4 averaged over all voxels, in the case of an
LSQ solution to the tomographic system, the mean difference
decrease by means of introducing more SWD estimates into
the tomographic reconstruction is much smaller than that in
the case of a CS solution. When averaged over 48 samples
per observing geometry, introducing more SWD estimates
improves the mean difference by up to 1.3 ppm or 1.9 ppm
(maximum improvement observed for 20 or 15 signal direc-
tions per site in the case of LSQ or CS).

A more in-depth analysis does not show any significant
differences among the individual voxels. Moreover, no sig-
nificant systematics between the LSQ and CS solutions ap-
peared, neither at the boundary layer nor at the top of the
atmosphere. For most of the tested scenarios, LSQ provides
better results than CS. However, if there are many sites and
many different signal directions available, CS yields more
accurate and more precise results than LSQ.

When investigating the standard deviation of the differ-
ences between estimated refractivities and WRF refractiv-
ities for the CS case, considering an increased number of
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Figure 3. Absolute differences between estimated refractivity and the WRF refractivity in ppm for an exemplary voxel in the lower middle of
the lowest voxel layer for the 48 samples of each investigated observing geometry setting. The two left columns use an ordinate ranging from
−25 to 25 ppm, the third column plots the differences within the range −10 to 10 ppm, and the right column plots the differences within the
range −5 to 5 ppm. The legend in the upper left subplot holds for all the subplots: red circles stand for the LSQ results, while blue squares
represent the CS results. In each subplot, the minimum and maximum absolute differences in ppm of the LSQ or CS refractivity estimate
with respect to the WRF input refractivities and the mean and the standard deviation over all samples are given in red and blue. Moreover,
the mean and the standard deviation over all the samples are indicated for LSQ by a red dashed line, for CS by a blue dash-dotted line, and
in the corresponding colors by error bars.

synthetic GNSS sites only while keeping a constant num-
ber of five signal directions per site is not advantageous.
However, as of 15 different signal directions per site, a clear
improvement in standard deviation is visible when increas-
ing the number of sites in the tomographic setting solved
by means of CS. Independently of the number of sites, for
realistic GPS-like observing geometry settings with 5 to 10

signal directions per site, the LSQ refractivity estimates are
more precise than the CS refractivity estimates. In contrast,
as of 15 signal directions per site, the CS solution yields
more accurate and more precise refractivity estimates than
the LSQ solution if at least 22 sites are available. That is, this
study shows that LSQ is less sensitive to the number of sig-
nal directions than CS. Therefore, we recommend using LSQ
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Figure 4. Averaged over all voxels, this figure shows the mean of the absolute difference and the standard deviation (SD) of the difference
between estimated refractivities and WRF refractivities in ppm, deduced from 48 samples of each investigated observing geometry setting
composed of a certain number of synthetic GNSS sites and various numbers of signal directions per site. The dashed and dotted lines serve
for better following the variation of the represented quantities with the number of sites, but only the discrete values indicated by the markers
should be evaluated. The legend in the upper left subplot holds for all the subplots. In each subplot, the improvement by introducing 32 sites
instead of 7 sites is given in red and blue. Degradations are given with a minus sign.

for water vapor tomography with GPS-only observations and
CS for water vapor tomography with multi-GNSS SWD es-
timates.

In the case of the maximum number of sites and the maxi-
mum number of signal directions per site (32 sites and 20 sig-
nal directions per site), when averaged over the 48 considered
samples per observing geometry, the mean difference and the
standard deviation of the LSQ or CS reconstruction attain
values of about 0.3 ppm or 0.0 ppm. Therefore, the number
of sites and the number of signal directions per site are of
particular interest when aiming at a very accurate and very
precise tomographic reconstruction using CS.

For the given 5×5×5 voxel discretization with horizontal
voxel sizes of 19 km and 20 km, the rule of thumb of Cham-
pollion et al. (2004) requires the mean intersite distance to
correspond to no more than 19 to 20 km. The results show
that, using the investigated synthetic data set with at least 15
signal directions per site, the CS solution is able to more ac-
curately and more precisely reconstruct the atmospheric wa-
ter vapor distribution than LSQ in the case of 22 sites within
the 95×99 km2 large study area, i.e., at a site density of about
1 site per 20.7× 20.7 km2, which is a bit lower than that re-
quired by the rule of thumb of Champollion et al. (2004).
That is, if 15 signal directions are available per site, the rule
of thumb can be transferred from the LSQ solution to water
vapor tomography to CS solutions.

Consequently, the following three main results are sum-
marized from this study.

1. The rule of thumb of Champollion et al. (2004) can be
transferred from LSQ to CS.

2. Based on site distributions obeying the rule of thumb of
Champollion et al. (2004), CS needs a variety of at least

15 signal directions per site in order to estimate the 3-
D refractivity field more accurately and precisely than
LSQ.

3. LSQ seems to be less sensitive to the number of signal
directions than CS. Therefore, CS should only be used
in the case of multi-GNSS SWD estimates yielding a
variety of at least 15 signal directions per site.

5 Discussion and outlook

Section 4 states not only that the rule of thumb of Cham-
pollion et al. (2004) holds for a tomographic solution based
on LSQ, but also that it ensures a good tomographic recon-
struction in the case of a CS solution. Although this finding
is based on many different observing geometry settings, it
only refers to a single voxel discretization and to a single
study area with a single topography and a single site dis-
tribution within that study area. As a consequence, this re-
search mainly investigates the validity of the rule of thumb
of Champollion et al. (2004) for CS for the given study
area, weather condition, and voxel discretization. For gen-
eralization, further tests should be performed that repeat the
described methodology for other study areas, weather con-
ditions, and voxel discretizations and for site distributions
varying not only in the number but also the position of the
sites. In particular, using only five vertical layers potentially
represents limits to the validity of the results of the proposed
approach.

Moreover, as the presented approach only relies on a syn-
thetic data set deduced from WRF, the synthetic SWDs in-
troduced within the tomographic system in this research are
too optimistic when compared to real GNSS SWD estimates.
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Therefore, the conclusions drawn in Sect. 4 cannot necessar-
ily be transferred to tomographic applications involving real
SWD estimates. In order to get a better idea of the transfer-
ability of the results, the analysis should be repeated based on
real data or the effect of adding different types of noise to the
synthetic SWD estimates should be investigated (e.g., mea-
surement and sensor noise and uncertainties resulting from
the observing geometry). In the presented approach, instead
of mapping ZWDs (zenith wet delays, related to SWDs by
means of mapping as described, e.g., in Niell, 1996) to the
slant signal directions as in the case of a real GNSS process-
ing, the synthetic SWD data set is computed based on a direct
ray tracing within the same voxels in which the tomographic
reconstruction is thereafter performed. Yet, Heublein (2019)
shows that this involves neglecting both a voxel discretiza-
tion error and a mapping error committed in the case of real
data.

Furthermore, Sect. 4 shows that the standard deviation of
the difference between LSQ refractivity estimates and WRF
refractivities is 6 % to 65 % smaller than that computed based
on the CS refractivity estimates if at most 10 different signal
directions per site are available. In contrast, in the case of a
high number of sites and a high number of signal directions
per site, the LSQ reconstruction is not able to yield as accu-
rate and as precise estimates of the water vapor distribution as
CS. That is, when solving the tomographic system by means
of LSQ, increasing the number of SWD signal directions im-
proves the tomographic reconstruction quality less than when
using CS. This may be due to the geometric smoothing con-
straints forming the basis of the LSQ solution. In the case
of a small number of observations, the smoothing constraints
ensure a smooth solution free of outliers that does not nec-
essarily correspond to the prevailing atmospheric conditions.
In the case of a high variety of observations, the smoothing
constraints become less important with respect to the data fi-
delity term within the LSQ solution to the tomographic sys-
tem, but they still affect the tomographic solution. Even in
the case of a very high number of observations, the tomo-
graphic system cannot be solved in a purely data-driven way.
Instead, the tomographic solution always takes into account
the chosen model assumptions; i.e., the LSQ solution always
applies a certain amount of smoothing.

In addition, a low or high number of signal directions cho-
sen from a synthetic multi-GNSS constellation for the rec-
ommendation of LSQ or CS for GPS-only or multi-GNSS
water vapor tomography applications should not be set equal
to considering a real GPS-only or real multi-GNSS setting.
Choosing a small number of signal directions from a multi-
GNSS constellation yields a higher variability in the signal
directions than choosing the same small number of signal
directions from a GPS-only constellation. Since a high num-
ber of signal directions proved to be of particular importance
in the case of a CS solution, the quality of the refractivity
estimates deduced using CS may decrease if real GPS-only
signal directions are chosen.

Finally, future research should analyze in more detail
which signal directions are necessary in an LSQ- or CS-
based water vapor tomography in order to reconstruct well
the refractivities of as many voxels as possible. A two-step
CS LSQ may then first yield accurate refractivity estimates
for most voxels by means of CS and then use the geometric
smoothing constraints applied in LSQ to improve the refrac-
tivity estimates of those voxels in which CS yields inaccu-
rate refractivity estimates even if a high number of sites and
a high number of signal directions per site are available.
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