Bolaji, O., Owolabi, O., Falayi, E., Jimoh, E., Kotoye, A., Odeyemi, O., Rabiu, B., Doherty, P., Yizengaw, E., Yamazaki, Y., Adeniyi, J., Kaka, R., and Onanuga, K.: Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum, Ann. Geophys., 35, 123–132, https://doi.org/10.5194/angeo-35-123-2017, 2017.
Buonsanto, M. J.: Ionospheric Storms – A Review, Space Sci. Rev., 88, 563–601, 1999.
COSMIC data analsysis center: Level 2 – ionospheric profiles, available at:
http://cosmic-io.cosmic.ucar.edu/cdaac/index.html, last access: 12 September 2020.
De-Boor, C.: A Practical Guide to Splines, Springer, New
York, USA, 1978.
Emmert, J. T., Richmond, A. D., and Drob, D. P.: A computationally compact
representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth
base vectors, J. Geophys. Res., 15, A08322, https://doi.org/10.1029/2010JA015326, 2010.
Ercha, A., Zhang, D., Ridley, A. J., Xiao, Z., and Hao, Y.: A global model:
Empirical orthogonal function analysis of total electron content 1999–2009
data, J. Geophys. Res., 117, A03328, https://doi.org/10.1029/2011JA017238, 2012.
Guochang, X.: GPS. Theory, Algorithms, and Applications, Springer, New York, USA, 2007.
Habarulema, J. B., McKinnel, L., and Opperman, B.: Regional GPS TEC modeling;
attempted spatial and temporal extrapolation of TEC using neural networks,
J. Geophys. Res.-Space Phys., 116, A04314, https://doi.org/10.1029/2010JA016269, 2011.
Hargreaves, J. K.: The Solar-Terrestrial environment, Cambridge University
Press, New York, USA, 1992.
Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E.: Global Navigation
Satellite Systems, GPS, GLONASS, Galileo and more, Springer, New York, USA, 2007.
Jakowski, N., Schlüter, S., and Sardon, E.: Total electron content
models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18,
https://doi.org/10.1029/2010RS004620, 2011b.
Klipp, T. D. S., Petry, A., de Souza, J. R., de Paula, E. R., Falcão, G. S., and de Campos Velho, H. F.: Ionosonde total electron content evaluation using International Global Navigation Satellite System Service data, Ann. Geophys., 38, 347–357, https://doi.org/10.5194/angeo-38-347-2020, 2020.
Klobuchar, J. A.: Ionospheric time-delay algorithm for single frequency GPS
users, IEEE Trans. Aerosp. Electron. Syst., 23, 325–331,
https://doi.org/10.1109/TAES.1987.3-10829, 1987.
Krankowski, A., Zakharenkova, I., Krypiak-Gregorczyk, A., Shagimuratov, I.
I., and Wielgosz, P: Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data, J. Geodesy, 85, 949–964, https://doi.org/10.1007/s00190-011-0481-z, 2011.
Leva, J. L., de Haag, M. U., and Dyke, K. V.: Performance of standalone GPS,
in: Understanding GPS: Principles and Applications, edited by: Kaplan, E. D. and Hegarty, C. J., Artech House, Inc. 685 Canton Street Norwood, MA 02062, 66–112, 2006.
Nose, M., Iyemori, T., Sugiura, M., and Kamei, T.: Geomagnetic Dst index, World Data Center for Geomagnetism, Kyoto, available at:
http://swdcwww.kugi.kyoto-u.ac.jp/, last access: 12 September 2020.
Matzka, J. and Stolle, C.: Indices of Global Geomagnetic Activity, World Data Center for Geomagnetism, Kyoto, available at:
ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/, last access: 12 September 2020.
Mengist, C. K., Ssessanga, N., Jeong, S.-H., Kim, J.-H., Kim, Y. H., and
Kwak, Y.-S: Assimilation of multiple data types to a regional ionosphere model with a 3D-Var algorithm (IDA4D), Space Weather, 17, 1018–1039, https://doi.org/10.1029/2019SW002159, 2019.
Mukhtarov, P., Pancheva, D., Andonov, B., and Pashova, L.: Global TEC maps
based on GNSS data: 1. Empirical background TEC model, J. Geophys. Res.-Space, 118, 4594–4608, 2013.
Mungufeni, P., Jurua, E., Habarulema, J. B., and Anguma, S. K.: Modeling the
probability of ionospheric irregularity occurrence over African low latitude
region, J. Atmos. Sol.-Terr. Phy., 128, 46–57, 2015.
Mungufeni, P., Habarulema, J. B., Migoya-Orué, Y., and Jurua, E.: Statistical analysis of the correlation between the equatorial electrojet and the occurrence of the equatorial ionisation anomaly over the East African sector, Ann. Geophys., 36, 841–853, https://doi.org/10.5194/angeo-36-841-2018, 2018.
Mungufeni, P., Rabiu, A. B., Okoh, D., and Jurua, E.: Characterization of
Total Electron Content over African region using Radio Occultation
observations of COSMIC satellites, Adv. Space Res., 65, 19–29,
https://doi.org/10.1016/j.asr.2019.08.009, 2019.
Najman, P. and Kos, T.: Performance Analysis of Empirical Ionosphere Models
by Comparison with CODE Vertical TEC Maps, in: Mitigation of
Ionospheric Threats to GNSS: an Appraisal of the Scientific and
Technological Outputs of the TRANSMIT Project, edited by: Notarpietro, R.,
InTech Open Science Publications, 5 Princes Gate Court, London, SW7 2QJ, United Kingdom, 162–178, https://doi.org/10.5772/58774, 2014.
Okoh, D., Owolabi, O., Ekechukwu, C., Folarin, O., Arhiwo, G., Agbo, J.,
Bolaji, S., and Babatunde, R.: A regional GNSS-VTEC model over Nigeria using
neural networks: A novel approach, Geodesy and Geodynamics, 7, 19–31, 2016.
Okoh, D., Seemala, G., Rabiu, B., Habarulema, J. B., Jin, S., Shiokawa, K., Otsuka, Y., Aggarwal, M., Uwamahoro, J., Mungufeni, P., Segun, B., Obafaye, A., Ellahony, N., Okonkwo, C., Tshisaphungo, M., and Shetti, D.: A Neural Network-Based Ionospheric Model Over
Africa From Constellation Observing System for Meteorology, Ionosphere, and
Climate and Ground Global Positioning System Observations, J. Geophys. Res.-Space, 124, https://doi.org/10.1029/2019JA027065, 2019.
Opperman, B.: Reconstructing ionospheric TEC over South Africa using signals
from a regional GPS network, PhD Thesis, Rhodes University, Grahamstown, South Africa, 30 pp., 2008.
Rama Rao, P. V. S., Jayachandran, P. T., Sri Ram, P., Ramana Rao, B. V., Prasad, D. S. V. V. D., and Bose, K. K.: Characteristics of VHF radiowave scintillations over a solar cycle (1983–1993) at a low-latitude station: Waltair (17.7
∘ N, 83.3
∘ E), Ann. Geophys., 15, 729–733, https://doi.org/10.1007/s00585-997-0729-3, 1997.
Reinisch, B. and Huang, X.: Deducing topside profiles and total electron
content from bottomside ionograms, Adv. Space Res., 27, 23–30,
https://doi.org/10.1016/S0273-1177(00)001368, 2001.
Sun, Y., Liu, J., Tsai, H., and Krankwski, A.: Global ionospheric map
constructed by using TEC from ground-based GNSS receiver and
FORMSAT-3/COSMIC GPS occultation experiment, GPS solutions, 21, 1583–1591,
https://doi.org/10.1007/s10291-017-0635-4, 2017.
Tebabal, A., Radicella, S. M., Damtie, B., Migoya-Orue', Y., Nigussie, M.,
and Nava, B.: Feed forward neural network based ionosphericmodel for the
East African region, J. Atmos. Sol.-Terr. Phy., 191, 1–10,
https://doi.org/10.1016/j.jastp.2019.05.016, 2019.
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J.,
Barrois, O., Bertrand, F., Bondar, T., and Bones, A.: International
Geomagnetic Reference Field: the 12th generation, Earth Planet. Sp., 79, 67–79, https://doi.org/10.1186/s40623-015-0228-9, 2015.
U.S. Dept. of Commerce, NOAA: Daily Solar Data, Space Environment Center,
available at:
http://www.swpc.noaa.gov/, last access: 12 September 2020.
Zhang, M.-L., Wan, W., Liu, L., and Ning, B.: Variability study of the
crest-to-trough TEC ratio of the equatorial ionization anomaly
around 120
∘ E longitude, Adv. Space Res., 43, 1762–1769, 2009.