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Abstract. This study developed a model of total elec-
tron content (TEC) over the African region. The TEC data
were obtained from radio occultation measurements done by
the Constellation Observing System for Meteorology, Iono-
sphere, and Climate (COSMIC) satellites. Data during geo-
magnetically quiet time (Kp < 3 and Dst>−20 nT) for the
years 2008–2011 and 2013–2017 were binned according to
local time, seasons, solar flux level, and geographic longi-
tude and latitude. B splines were fitted to the binned data
to obtain model coefficients. The model was validated using
actual COSMIC TEC data of the years 2012 and 2018. The
validation exercise revealed that approximation of observed
TEC data by our model produces a root mean square error of
5.02 TECU (total electron content unit). Moreover, the mod-
eled TEC data correlated highly with the observed TEC data
(r = 0.93). Due to the extensive input data and the applied
modeling technique, we were able to reproduce well-known
TEC features such as local time, seasonal, solar activity cy-
cle, and spatial variations over the African region. Further
validation of our model using TEC measured by ionosonde
stations over South Africa at Hermanus, Grahamstown, and
Louisville revealed r values > 0.92 and root mean square er-
ror (RMSE) < 5.56 TECU. These validation results imply
that our model can estimate TEC fairly well that would be
measured by ionosondes over locations which do not have
the instrument. Another element of the significance of this
study is the fact that it has shown the potential of using basis
spline functions for modeling ionospheric parameters such as
TEC over the entire African region.

1 Introduction

Among the error sources that affect the positioning in the
Global Navigation Satellite System (GNSS) are propagation-
medium-related errors. In particular, the ionospheric refrac-
tion is the largest contributor of the user-equivalent range er-
ror. This type of frequency-dependent error can virtually be
eliminated in dual-frequency receivers by differential tech-
niques (Hofmann-Wellenhof et al., 2007). For the case of
single-frequency receivers, some GNSS (e.g., Global Posi-
tioning System (GPS) and Galileo) broadcast messages in-
clude the parameters of an ionospheric model which can
be used to compute and correct the ionospheric effects
(Guochang, 2007). For instance, the GPS uses the Klobuchar
model, which represents the zenith delay as a constant value
at night and a half-cosine function during the day (Klobuchar,
1987). In the framework of the European Galileo constel-
lation, NeQuick G based on the NeQuick model has been
proposed to be used for single-frequency positioning (see Is-
sue 1.2, September 2016 by the European Commission, titled
“European GNSS (Galileo) Open Service – Ionospheric cor-
rection algorithm for Galileo single-frequency users”). The
NeQuick and its subsequent modifications (NeQuick G and
NeQuick 2) are a three-dimensional, time-dependent iono-
spheric electron density model developed by the Aeronomy
and Radio Propagation Laboratory (ARPL) of the Abdus
Salam International Center for Theoretical Physics (ICTP) in
Trieste, Italy, and the Institute for Geophysics, Astrophysics
and Meteorology of the University of Graz, Austria (Nava
et al., 2008). In addition to using models to reduce iono-
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spheric refraction errors, Space Based Augmentation Sys-
tems (SBAS) such as the Wide Area Augmentation System
(WAAS), the European Geostationary Navigation Overlay
Service (EGNOS), and the GPS-aided Geo Augmented Nav-
igation (GAGAN) are also used (Hofmann-Wellenhof et al.,
2007).

For the international standard specification of ionospheric
parameters (such as electron density, electron and ion tem-
peratures, and equatorial vertical ion drift), the Committee on
Space Research (COSPAR) and the International Union of
Radio Science (URSI) recommended the International Ref-
erence Ionosphere Model (IRI) (Bilitza, 2001). IRI is an em-
pirical model primarily based on all available experimental
data (ground- and space-based) sources. However, theoreti-
cal considerations have been used in bridging data gaps and
for internal consistency checks (Bilitza, 2001).

The ionospheric total electron content (TEC) is one of the
important descriptive physical quantities of the ionosphere
(Rama Rao et al., 1997; Ercha et al., 2012). The GNSS mea-
surements obtained from the global and regional networks of
International GNSS Service (IGS) ground receivers have be-
come a major source of TEC data. As one of the IGS analysis
centers, Center for Orbit Determination in Europe (CODE)
provides Global Ionosphere Maps (GIMs) containing verti-
cal TEC data daily using the GNSS data collected from over
200 tracking stations of IGS and other institutions. Several
studies have used GIMs from CODE and other IGS analy-
sis centers such as the Jet Propulsion Laboratory (JPL) to
construct TEC models (Jakowski et al., 2011a; Mukhtarov
et al., 2013; Ercha et al., 2012; Sun et al., 2017). Jakowski
et al. (2011a) proposed the Global Neustrelitz TEC Model
(NTCM-GL) that describes the average TEC under quiet ge-
omagnetic conditions. The NTCM-GL was developed using
GIMs during 1998–2007 provided by CODE. A global back-
ground TEC model was also built using CODE GIMs by
Mukhtarov et al. (2013). The model describes the climato-
logical behavior of the ionosphere. The GIMs from JPL were
used by Ercha et al. (2012) to construct a global ionosphere
model using the empirical orthogonal function (EOF) anal-
ysis method. The Taiwan Ionosphere Group for Education
and Research constructed a global ionosphere model from
GNSS and the Constellation Observing System for Meteo-
rology, Ionosphere, and Climate (COSMIC) GPS radio oc-
cultation (RO) observations (Sun et al., 2017). The map of
all the averaged root mean square error (RMSE) values of
CODE GIMs during the years 2010–2012 presented by Na-
jman and Kos (2014) showed high values over low-latitude
African regions. This could be due to the poor distribution
of IGS tracking stations over Africa and the inability of the
spherical harmonics function used in GIMs to describe iono-
spheric structure over low latitudes.

In addition to the existing GIMs discussed in the previous
paragraph, regional TEC maps and models have also been
constructed. In comparison with the global models, regional
TEC models might have better accuracy over the particu-

lar region for which it was constructed. Opperman (2008)
stated that the higher time and spatial resolution imaging
achievable with regional models permits the analysis of lo-
calized ionospheric structures and dynamics not observable
in global models. Examples of studies that developed TEC
models over some parts of Africa are the following. A neu-
ral network model of GNSS – vertical TEC (GNSS-VTEC)
over Nigeria was developed by Okoh et al. (2016) using
all available GNSS data from the Nigerian GNSS Perma-
nent Network (NIGNET). An adjusted spherical harmonic-
based TEC model was developed by Opperman (2008) using
a network of South African dual-frequency GPS receivers.
Habarulema et al. (2011) presented the Southern Africa TEC
prediction (SATECP) model that was based on the neural net-
work technique. The SATECP generates TEC predictions as
a function of input parameters, namely, local time, day of
year, solar and magnetic activity levels, and the geographi-
cal location. A neural-network-based ionospheric model was
developed using GPS-TEC data over the East African sector
by Tebabal et al. (2019). Recently, Okoh et al. (2019) used
the neural network technique to develop a TEC model over
the entire African region. In addition to using TEC obtained
by the COSMIC RO technique, they used TEC measured by
GPS receivers on the ground.

Due to the lack of a dense network of ground-based GNSS
receivers and poor coverage of COSMIC RO data over the
African region, the TEC model over the entire African region
presented by Okoh et al. (2019) sometimes failed to capture
the equatorial ionization anomaly (EIA) over the region. This
point has been illustrated with examples in Sects. 2 and 5. In
this study, we applied a data binning method to the COS-
MIC RO TEC data that allowed development of an improved
TEC model over the region. Moreover, we demonstrate the
potential of the basis spline functions to model TEC over the
African region. These basis functions never vanish over lim-
ited intervals and add up to 1 at all local times and longitudes
(De-Boor, 1978). Moreover, according to Scherliess and Fe-
jer (1999), they are ideally suited to model the equatorial
ionosphere, which exhibits smooth and rapid changes during
daytime and near sunset, respectively, by proper placement
of the mesh of nodes. In Sect. 2, the data and methods of
analysis that were used in the study are described. The details
of the model proposed in this study are described in Sect. 3.
We present a comparison between the observed and modeled
TEC in Sect. 4. The model validation and the conclusions are
presented in Sects. 5 and 6, respectively.

2 The data and methods

2.1 Data sources

In order to overcome the problem of the lack of a dense net-
work of ground-based GNSS receivers over the African re-
gion, this study used TEC data obtained from RO measure-

Ann. Geophys., 38, 1203–1215, 2020 https://doi.org/10.5194/angeo-38-1203-2020



P. Mungufeni et al.: Modeling total electron content 1205

ments done by the COSMIC satellites. The integrated elec-
tron density (integration being done up to the altitudes of the
COSMIC satellites) which is being referred to as TEC in this
study can be obtained from ionPrf files which are processed
at the COSMIC Data Analysis and Archive Centre (CDAAC)
(http://cosmic-io.cosmic.ucar.edu/cdaac/index.html, last ac-
cess: 12 September 2020). The TEC for the individual occul-
tation events was assigned to the geographic coordinates of
NmF2 in the same file.

In order to get integrated electron density approximately
up to the altitudes of GPS satellites, Okoh et al. (2019) used
neural networks to learn the relationship between coincident
TEC measurements done by ground-based GPS receivers and
COSMIC RO. They showed that the ratio between TEC data
from the two sources varies spatially. This observation im-
plies that the neural networks may not learn the relationship
between TEC measured by ground-based GPS receivers and
COSMIC RO very well over locations which do not have the
former data set during the entire study period. As can be seen
in Fig. 1 of Okoh et al. (2019), there was a large spatial cov-
erage with no ground-based GPS receivers. Unlike what has
been done in Okoh et al. (2019) and Mungufeni et al. (2019),
in the current work we used only COSMIC TEC without any
adjustments.

In this regard, an analysis of coincident ground-based
GNSS TEC and TEC from COSMIC occultation data per-
formed by Mungufeni et al. (2019) reveals that the upper
quartile of the differences between the two data sets may
reach up to ∼ 11 TECU (total electron content unit) over
the northern crest of the equatorial ionization anomaly. Over
the southern midlatitude region, the differences were low
(∼ 4 TECU). Since the upper quartiles of the differences
can reach up to ∼ 11 TECU, the median/mean values in
the worst cases might obviously be much lower than this
value. This might be the reason for observing most of the
well-known ionospheric TEC features over the African re-
gion when the COSMIC RO TEC was appropriately binned
as in Mungufeni et al. (2019). Therefore, this study used the
TEC obtained from COSMIC occultation measurements to
develop the TEC model over the African region in order to
reproduce these ionospheric features. Such endeavors are im-
portant for educational purposes.

During geomagnetic storms, the variations in zonal elec-
tric fields and composition of the neutral atmosphere con-
tribute significantly to the occurrence of negative and positive
ionospheric storm effects in the low-latitude region (Rishbeth
and Garriot, 1969; Buonsanto, 1999; Adewale et al., 2011).
Therefore, since the ionosphere changes in a complex man-
ner during geomagnetic storms, we only considered data on
quiet days. The quiet geomagnetic days were identified by
examining the 3-hourly Kp and disturbance storm time (Dst)
indices that were obtained from the World Data Center of
Kyoto, Japan (http://swdcwww.kugi.kyoto-u.ac.jp/, last ac-
cess: 12 September 2020). A day was considered to be quiet
if all the eight Kp values in that day were ≤ 3. In addition

Table 1. Distribution of number of days with data.

Year Number of days
with data

2008 219
2009 293
2010 235
2011 174
2012 169
2013 185
2014 164
2015 128
2016 151
2017 154
2018 211

to satisfying this condition, the hourly values of Dst in that
day should also have values ≥− 20 nT. The two conditions
were applied to ensure that both low- and mid/subauroral-
latitude geomagnetic disturbances are detected by Dst and
Kp indices, respectively. In future, we intend to use TEC data
during geomagnetically disturbed conditions to construct a
TEC model during geomagnetically disturbed periods.

2.2 Methods of data analysis

The TEC data during the years 2008–2011 and 2013–2017
were used for developing the TEC model over the African
region. Due to the adequate data needed to develop an em-
pirical model, we only reserved the data of the years 2012
and 2018 for validation. The period considered in this study
represents data of both low and high solar activity level in
sunspot cycles 23 and 24. The data within geographic lat-
itude and longitude ranges of − 35–35◦ and − 20–60◦, re-
spectively, were used to cover the African region. Table 1
presents the number of days per year when there were TEC
data over the African region. Since there are many geomag-
netically disturbed days in high (2012–2015) and medium
(2011 and 2016) solar activity years, the number of days with
data is also reduced in such years compared to low solar ac-
tivity years (2008–2010, 2018).

It would be good to bin the TEC data according to ge-
omagnetic latitudes since many structural and dynamical
features of the ionized and neutral upper atmosphere are
strongly organized by the geomagnetic field (e.g., Emmert
et al., 2010). This may be complicated since geomagnetic
latitude lines are not usually straight. For convenience and
simplicity, we binned the data based on geographic coordi-
nates. In order to observe small-scale ionospheric structures,
small grid resolutions of 3 and 5◦ in geographic latitude and
longitude, respectively, were used to bin the TEC data. These
grid resolutions resulted in 24 and 16 latitudinal and longi-
tudinal bins, respectively. Several studies (e.g., Krankowski
et al., 2011 and Mengist et al., 2019) that have used COS-
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MIC data commonly consider measurements with horizontal
smear > 1500 km prone to errors, and they reject such mea-
surements. We established that after applying this restriction,
there were ∼ 40 RO measurements per day during the year
2013 over our study area (not shown here). Based on the pre-
vious discussions, this value is far less than the 9216 (16 lon-
gitudinal, 24 latitudinal, and 24 local time) TEC data points
required in all grid cells in a day. As stated in Sect. 1, this
poor amount of data to represent day-of-year TEC variation
might be the reason for the failure of the TEC model pre-
sented by Okoh et al. (2019) to capture in some cases the
EIA over the African region. Another reason might be the
discrepancy which arises due to some locations being rep-
resented by adjusted COSMIC RO TEC while others by the
ground-based GPS TEC data.

Since empirical modeling requires adequate data for the
mathematical functions to capture the physics inherent in the
data, this study did not reject COSMIC RO TEC measure-
ments with horizontal smear > 1500 km. Although not pre-
sented here, we observed that the COSMIC TEC data val-
ues with smear > 1500 km did not introduce alarming er-
rors. This observation was made when we analyzed COS-
MIC TEC data which were coincident with TEC observed
by ionosonde stations over South Africa (see details in
Sect. 5.2), located at Hermanus, Grahamstown, and Louis-
vale. Interestingly, compared to measurements with hori-
zontal smear > 1500 km, some measurements with horizon-
tal smear < 1500 km were observed to be far from the lin-
ear least-squares fitting line. Further analysis of COSMIC
RO observations over our study area revealed that without
restricting horizontal smear, there were ∼ 80 RO measure-
ments per day during the year 2013 (not shown here). Still
this value is far less than the 9216 TEC data values re-
quired to fill all spatial grid cells in a day. To partially solve
this problem, instead of binning data according to year, we
binned the data according to different solar flux levels as
shown below.

For each spatial grid cell, the data were binned at a 1 h in-
terval. TEC values within the bins were averaged to yield
1 h resolution TEC data over the grids. TEC data for the
different days were binned according to the F10.7 flux of
that day. The F10.7 flux indices were obtained from the
Space Weather Prediction Center (SWPC) of the National
Oceanic and Space Administration (NOAA) (http://www.
swpc.noaa.gov/, last access: 12 September 2020). The F10.7
flux ranges for low solar activity (LSA), medium solar ac-
tivity (MSA), and high solar activity (HSA) were < 76, 76–
108, and> 108 sfu, respectively. The boundary values 76 and
108 sfu of the F10.7 flux ranges correspond to the 75th and
25th percentiles of all F10.7 flux values on the days in low
(2008–2010, 2017–2018) and high (2012–2015) solar activ-
ity years, respectively.

The data within a specific solar flux bin were further
binned based on months of a year. The averages of the cor-
responding F10.7 flux of the days used to represent seasonal

Table 2. Average monthly F10.7 flux values used in the study.

Month F10.7 flux (sfu)

LSA MSA HSA

January 71.10 83.94 140.65
February 71.14 87.06 126.23
March 69.81 85.40 130.98
April 71.02 86.09 130.46
May 70.29 90.59 123.80
June 69.51 89.91 118.73
July 68.09 88.14 128.92
August 67.45 85.46 114.53
September 69.20 86.34 122.98
October 70.06 81.88 131.50
November 71.66 82.40 142.95
December 70.82 82.97 142.72

TEC were determined and used to capture the variation of
TEC with solar flux. Table 2 presents the average F10.7 flux
values that were determined in the months of a year. In sum-
mary, a total of 331 776 TEC data values were needed to ex-
ist in 16 longitudinal, 24 latitudinal, 3 solar flux, 12 monthly,
and 24 hourly bins, in order to determine the model coef-
ficients. However, from the data of the entire study period,
only 121 447 bins were filled with TEC data values. The aver-
age of the standard deviations of the bins that contained more
than 1 TEC data during low (sample size= 21 108), medium
(sample size= 6180), and high (sample size= 7495) solar
flux levels were 1.28, 2.15, and 4.31 TECU, respectively.

The bins which did not have TEC data were filled by esti-
mation following the procedures described in the three steps
below.

1. At a particular spatial grid cell, the diurnal TEC was
divided into two local time sectors, namely, (i) 10:00–
24:00 LT and (ii) 00:00–10:00 LT. Sector (i) which is
daytime and before midnight includes the time when
daily and secondary TEC peaks are expected, while
(ii) which is mostly at night is when TEC varies slowly.
When slow variation of TEC was expected as in sector
(ii) and there were at least a few (> 2) TEC data avail-
able, a smoothing spline (De-Boor, 1978) data fitting
method was used to estimate missing TEC values. In
cases in which rapid TEC variations are expected as in
sector (i) and at least half of the total expected number
of data points were filled with TEC data, a piece-wise
cubic interpolation (De-Boor, 1978) data fitting method
was used to estimate missing TEC values. For example,
when there were at least four measurements in sector
(ii), the missing values were obtained by evaluating the
fitted function through the existing TEC data values. On
the other hand, when there were at least seven (half the
number of hours during 10:00–24:00 LT) TEC values in
sector (i), the missing values were obtained by evaluat-
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ing the fitted function to the available data values. After
estimating the missing TEC data from the two sections
of the diurnal TEC, the entire diurnal TEC data over a
particular grid cell were then considered to estimate the
missing values. When there were at least 12 (half the
number of hours in a day) values, the missing values
were obtained by evaluating a smoothing spline func-
tion fitted to the existing data values.

2. At a particular latitude and local time, the values of
TEC along all the longitudes were divided into west-
ern (− 20–20◦ E) and eastern (20–60◦ E) longitude sec-
tors. Each of the longitude sectors contained eight bins.
At night, when there were at least three TEC values
over any longitude sector, the missing values were ob-
tained by evaluating a smoothing spline function fitted
to the available data points, while during the day, when
there were at least four TEC values, the missing values
were obtained by evaluating a smoothing spline func-
tion fitted to the available data points. After estimating
the missing TEC values over the two longitude sectors,
the TEC over all longitudes was then considered to es-
timate the missing values. At night, when there were at
least eight values, the remaining values were obtained
by evaluating a smoothing spline fitted to the available
TEC data points. The missing values during daytime
were estimated when there were at least 10 measure-
ments available.

3. Procedure 3 is similar to 2, except for variations of TEC
as a function of latitude being considered at specific
values of longitude and time. TEC values over the lati-
tudes were divided into lower (− 35–0◦ S) and upper (0–
35◦ N) latitudinal sectors. There were 12 bins in each of
the latitudinal sectors. To estimate missing TEC values
at night over a latitudinal sector, at least four measure-
ments were required to be available, while during the
day, at least six values were required. When TEC data
over the combined latitudinal sectors were considered
to estimate the missing values, at least 12 values were
required to be available.

After repeating procedures 1–3 three times, all the 331 776
bins were filled with TEC data. For the purposes of mini-
mizing the effects of outliers, the diurnal TEC at spatial grid
cells was then separately fitted with smoothing splines which
were evaluated to obtain the TEC data that were later used to
determine the model coefficients as explained in Sect. 3. In
order to demonstrate the appropriateness of our estimation of
missing TEC data values and its use for determining model
coefficients, we present Fig. 1. Panels (a)–(c) of the figure
present the available TEC data (∗) and estimated (red line)
TEC values during low, medium, and high solar flux levels,
respectively.

The TEC data plotted in Fig. 1 correspond to January
and the grid cell centered at longitude 17.5◦W and latitude

34.5◦ S. Figure 1 clearly shows that the available and esti-
mated TEC variations depict the well-known diurnal and so-
lar activity level dependence patterns. Moreover, the figure
shows that the available data values are in most cases close
to the estimated TEC values. Therefore, the estimated TEC
values were then used to obtain the model coefficients.

3 The model

The TEC over the African region was expressed as

TEC(t,d,F,λ,ϕ)=
24∑
i=1

12∑
j=1

3∑
k=1

16∑
l=1

24∑
m=1

aijklm

×Ni(t)×Nj (d)×Nk(F )×Nl(λ)×Nm(ϕ) , (1)

where the linear model coefficients aijklm were determined
by the least-squares fitting procedure to the 331 776 TEC
data values as in Abdu et al. (2003), Jakowski et al. (2011b),
and Mungufeni et al. (2015). In Eq. (1), Ni(t), Nj (d),
Nk(F ), Nl(λ), and Nm(ϕ) are B splines of different orders
to represent variations of TEC with local time, seasons, solar
flux level, longitude, and latitude, respectively. Most of the
B splines were of order 2, except for those used to represent
LT and latitudinal variations which were of order 4. The or-
der of splines used to represent LT and latitude was higher to
cater for the rapid variations of TEC with these two parame-
ters. A total of 24 local time nodes, 1, 2, . . . , 24, were used.
For simple interpolation between months, seasonal/monthly
nodes were placed at the 15th day of each month. Solar flux
nodes used in the various months are as shown in Table 2.
The longitudinal nodes were separated by 5◦ and placed at
longitudes − 17.5, 12.5 7.5, . . . , 57.5◦, while the latitudinal
nodes were separated by 3◦ and placed at latitudes − 34.5,
− 31.5, − 28.5, . . . , 34.5◦.

4 Comparison of observed and modeled TEC

In order to assess the ability of the model to describe the data
used to construct it, modeled data were compared with the
binned data that were used to solve Eq. (1). The results of the
self-consistency check are presented in Fig. 2. It is important
to note that validation using data that were not included dur-
ing modeling is provided in Sect. 5. Panels in column (i) of
Fig. 2 present the observed binned TEC data, while column
(ii) presents the corresponding modeled TEC data. In col-
umn (iii), we present the differences between the observed
and modeled TEC data, referred to as errors. In Fig. 2, rows
(a), (b), and (c) correspond to LSA, MSA, and HSA, respec-
tively. The horizontal magenta lines in Figure 2 and later also
in Fig. 3 indicate the location of ∼ 0◦ dip latitude on the cor-
responding panel. As expected, Figure 2 clearly shows that
the corresponding modeled TEC almost perfectly matches
the observed binned TEC. This can be confirmed by the small
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Figure 1. Panels (a–c) present available (∗) and estimated (red line) TEC values during low, medium and high solar flux levels, respectively.
The data are for the month of January and fall within the grid cell centered at longitude and latitude of 17.5◦W and 34.5◦ S, respectively.

(< 0.1 TECU) error values presented in the panels of column
(iii). The variations of the ionosphere with local time and so-
lar flux level as well as location that are exhibited in Fig. 2
give the confidence of relying on the binned data as a good
representation of the ionosphere. The physical explanations
for these variations are as follows. The increase of both ob-
served and modeled TEC that occurs when the solar flux level
increases is usually attributed to increased ionizing radiations
in X-ray and extreme ultraviolet (EUV) bands, which in turn
leads to increased TEC in the ionosphere (Hargreaves, 1992).

The diurnal variation of TEC matches very well with the
variation of photoionizing radiation. At sunrise, the electron
density begins to increase rapidly, owing to photoionization
(Schunk and Nagy, 2009). After this initial increase at sun-
rise, electron density displays a slow rise throughout the day,
and then it decays at sunset as the photoionization source
disappears. Another diurnal feature of variation of TEC ex-
hibited in Fig. 2 is the existence of a secondary maximum
of TEC. This can clearly be seen in panels of row (c) along
the magenta lines, where the first peak occurs at ∼ 15:00 LT
and the second at ∼ 18:00 LT. The formation of a secondary
maximum of TEC that was mentioned previously may be ex-
plained as follows. During the day, the thermospheric wind
generates a dynamo electric field in the lower ionosphere that
is eastward (Schunk and Nagy, 2009). The eastward elec-
tric field, E, in combination with the northward geomag-
netic field, B, produces an upward E×B drift of the F re-
gion plasma. As the ionosphere co-rotates with the Earth to-
ward dusk, the zonal (eastward) component of the neutral
wind increases. The increased eastward wind component, in
combination with the sharp day–night conductivity gradient
across the terminator, leads to the pre-reversal enhancement

in the eastward electric field (Batista et al., 1986; Schunk
and Nagy, 2009). The F layer therefore rises as the iono-
sphere co-rotates into darkness. Although in the absence of
sunlight after sunset, the lower ionosphere rapidly decays,
there is high electron density at high altitudes, yielding the
secondary maximum in TEC.

Panels in rows (b) and (c) of Fig. 2 demonstrate the ex-
istence of the EIA region, where there are two belts of high
electron density on both sides of 0◦ dip latitude. The EIA
is usually attributed to the upward E×B drift which lifts
plasma to higher altitudes. The plasma then diffuses north
and south along magnetic field lines. Due to gravity and pres-
sure gradient forces, there is also a downward diffusion of
plasma. The net effect is the formation of the EIA region
(Appleton, 1946). Another feature of EIA that can be seen in
panels in rows (b) and (c) of Fig. 2 is the asymmetry of the
crests. Along the 120◦ longitude sector, Zhang et al. (2009)
reported the asymmetry of EIA crests. As described later at
the end of this section, the direction of neutral meridional
winds in March may favor high values of electron density
over the southern crest.

Generally, Fig. 2 shows that the locations outside the EIA
region have lower TEC values compared to locations around
and within the EIA region. The low values of TEC over loca-
tions outside the EIA region might be due to the lower eleva-
tion angle of the solar radiation flux which is responsible for
the creation of electrons (Schunk and Nagy, 2009). The solar
radiation flux is usually low for locations far from the sub-
solar point. The latter situation is dominant over locations
outside the EIA region, especially in March. The closeness
of the subsolar point to the locations within the EIA regions
results in high solar radiations over these locations. As a re-
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Figure 2. Variation of TEC as a function of geographic latitude and local time in the March equinox at 37.5◦ E. Panels in rows (a–c) corre-
spond to LSA, MSA, and HSA, respectively, while panels in columns (i)–(iii) correspond to observed binned TEC, modeled TEC, and the
difference between observed and modeled TEC (errors), respectively. The magenta line indicates ∼ 0◦ dip latitude.

sult, high TEC values were observed over locations within
the EIA region.

To demonstrate that the modeled TEC captures TEC varia-
tion with season, we present Fig. 3. In the figure, columns (i)
and (ii) present observed binned TEC and the corresponding
modeled TEC, respectively. Moreover, rows (a–d) present
TEC data during March, June, September, and December, re-
spectively.

As already observed in Fig. 2, it can clearly be seen from
Fig. 3 that the modeled TEC almost perfectly matches the
observed TEC data. Among the many features of TEC ex-
hibited by both observed and modeled TEC data, we would
like to emphasize the (i) equinoxial asymmetry of TEC, (ii)
occurrence of lowest TEC in June solstice, and (iii) high
values of TEC in December. Features (ii) and (iii) were
recently reported based on similar data by Mungufeni et
al. (2019). The reader may refer to this study for more discus-
sions. Mungufeni et al. (2016) observed equinoxial asymme-
try when studying ionospheric irregularities over the African
low-latitude region. They observed over the East African
region that the irregularity strength in the March equinox
was higher than that in the September equinox. They at-
tributed the equinoxial asymmetry to meridional winds in
March which might blow northward. Such a direction would
lift plasma up where recombination is not common. On the
other hand, in September, the winds might blow southward.
This could lead to recombination at low altitudes.

5 Model validation

5.1 Validation using reserved COSMIC RO TEC

In addition to comparing observed binned TEC with the cor-
responding modeled TEC, we validated our model using ob-
served TEC in the years 2012 and 2018. The data during
these 2 years were not used in developing the model. The
TEC data in the years 2012 and 2018 were binned accord-
ing to local time and spatially in a similar manner to the data
mentioned in Sect. 2.2. The corresponding local time, day of
year, solar flux, and spatial coordinates of the data were noted
and then used to generate the corresponding modeled TEC.
Despite the advantages of B spline modeling mentioned in
Sect. 1, one of its limitations is the inability to extrapolate.
Therefore, in situations where the solar flux level is higher
(lower) than the values specified in Table 2, the maximum
(minimum) value in the table was used to generate the cor-
responding modeled TEC. This idea was also applied when
the day of year, longitude, and latitude values were higher
(lower) than those specified in Sect. 3.

Figure 4 presents a scatter plot showing the observed TEC
against the corresponding modeled TEC. The red line in the
figure indicates the linear least-squares fit to the data in the
panel. Furthermore, indicated in Fig. 4 are (i) the correlation
coefficients (r) (ii) the r squared values, (iii) the number of
data points (n plotted), and (iv) the root mean square error
(RMSE) when the modeled TEC is used to represent the ob-
served TEC.
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Figure 3. Variation of TEC as a function of latitude and local time in HSA at 37.5◦ E. Panels in rows (a–d) are for the March equinox,
June solstice, September equinox, and December solstice, respectively, while panels in columns (i) and (ii) are observed binned and modeled
TEC, respectively. The magenta line indicates 0◦ dip latitude.

Figure 4. Scatter plot of observed TEC against modeled TEC.

The following observations can be noted from Fig. 4.
(i) The modeled TEC correlates highly (r ∼ 0.93) with the
observed TEC. (ii) The r squared values indicate that high
proportions (∼87 %) of the variations in the observed TEC
can be predicted by the modeled TEC. (iii) The RMSE value
of 5.05 TECU signifies that the modeled TEC closely ap-
proximates the observed TEC.

In order to show that the observed and modeled TEC have
similar magnitudes in addition to their similar variation de-
picted in Fig. 4, we computed the differences between corre-
sponding values of the data plotted in the figure. These were

Figure 5. The blue and red curves show the distribution of the num-
ber of observed errors (difference between observed and modeled
TEC) and the percentage of the errors, respectively.

referred to as errors. We also computed the percentage of
the different errors. The left and right vertical axes in Fig. 5
present the distribution of the number of observed errors and
their percentages, respectively. It can be seen from the figure
that the errors are randomly distributed since the distribution
curve is symmetric about 0 TECU. Indeed, the magnitudes
of the modeled TEC values are close to those of the observed
TEC since the majority of the error values are close to zero.

The cases of high error values (> 10 TECU) mostly have
< 2.5 % occurrence probability, as can be seen on the right
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vertical axis. These high errors may be partly attributed to
the limitation of the spline modeling technique (inability to
extrapolate) which was discussed earlier in this subsection,
Sect. 5.1.

5.2 Validation using ionosonde TEC measurements

The TEC data measured by the digisonde ionosonde stations
over South Africa located at Hermanus, Grahamstown, and
Louisvale can be accessed from the National Oceanic and At-
mospheric Administration (NOAA) website via the link ftp:
//ftp.ngdc.noaa.gov (last access: 12 September 2020). The
data obtained from the NOAA website are in the form of
auto-scaled ionospheric parameters such as peak height in the
F2 layer, critical frequency in the F2 layer, and TEC which
are stored in Standard Archiving Output (SAO) format files.
It should be noted that the TEC data provided in SAO files
are obtained by integrating electron density profiles up to al-
titudes of∼ 700 km. More details about the auto-scaling pro-
gram (real-time ionogram scaler with true height (ARTIST))
and the electron density profiles they produce can be found
in Reinisch and Huang (2001) and Klipp et al. (2020).

The magenta lines in Fig. 6 present the diurnal patterns of
TEC measured by ionosonde stations at Hermanus (panels in
column i), Grahamstown (panels in column ii), and Louisvale
(panels in column iii). The corresponding TEC generated by
our spline modeling technique (spline), NeQuick 2, and IRI-
2016 is superimposed with red, green, and blue lines, respec-
tively. We need to mention that during computation of TEC
using NeQuick 2 and IRI-2016, the height was limited to
the approximate altitude of the COSMIC satellites (800 km).
Moreover, for the case of IRI-2016, the NeQuick model op-
tion was specified to estimate topside electron density.

The panels in rows (a)–(c) show TEC on day of year 170
(June), 260 (September), and 350 (December), respectively.
These three days of the year in 2013 were geomagnetically
quiet. Preliminarily, Fig. 6 appears to reveal that IRI-2016 ei-
ther overestimates (December) or underestimates (June and
September) the TEC measured by the ionosonde stations. On
the other hand, our spline modeling technique and NeQuick
2 seem to depict good correspondence between the observed
and the modeled TEC. It can also be seen from Fig. 6 that
over a particular station, the shape of curves on different days
representing TEC generated by the IRI-2016 and NeQuick 2
models is similar. This is expected since these two models
were meant to reproduce monthly median values of the iono-
sphere. This means that our model, based on spline functions,
may capture the day-to-day variability of the ionosphere bet-
ter.

We generated such data plotted in Fig. 6 for geomagneti-
cally quiet days of the entire year 2013 and then performed
statistical analysis of the observed and the model TEC data.
Table 3 presents in column 3 the correlation coefficients (r)
for the correlations between modeled and ionosonde TEC.
Moreover, the table presents the RMSE when the ionosonde

Table 3. Correlation coefficients, r and RMSE associated with esti-
mation of TEC observed by ionosonde stations using models.

Ionosonde station/ Model r RMSE
number of observations (TECU)

Hermanus Spline 0.92 4.64
(n= 5110) IRI-2016 0.86 5.45

NeQuick 2 0.92 4.10

Grahamstown Spline 0.88 5.56
(n= 4450) IRI-2016 0.82 6.29

NeQuick 2 0.86 5.27

Louisville Spline 0.94 3.82
(n= 4543) IRI-2016 0.87 5.62

NeQuick 2 0.94 3.73

TEC was estimated using the models listed in column 2. The
number of observations (n) over each station that were used
to determine r and RMSE are put in brackets below the sta-
tion name.

It can be seen from Table 3 that the r values associated
with NeQuick 2 and the spline-based model are consistently
better when compared with those of IRI-2016. Moreover, the
RMSE values associated with IRI-2016 are the highest in all
the cases. These two observations indicate that compared to
the spline model and NeQuick 2, IRI-2016 poorly estimates
TEC at the locations of the ionosondes. The RMSE values as-
sociated with NeQuick 2 are always slightly lower than that
of the spline model, while the r values associated with the
spline model are mostly comparable or slightly higher than
that of NeQuick 2. These discussions demonstrate that our
spline model generates TEC values consistently with that ob-
served by ionosondes. This implies that equivalent TEC mea-
sured by ionosondes over midlatitude locations which do not
have ionosonde stations can be predicted fairly well using our
model. We might validate our model over the low-latitude
region that falls within the current study area if ionosonde
observations become available over the region in future.

5.3 Comparison of our model with existing regional
models

It would be good to compare error levels produced when
some measured TEC values are compared with modeled
TEC generated by (i) the existing regional TEC models
discussed in Sect. 1 and (ii) our TEC model of the spline
technique. We may not perform such analysis since models
in (i) are based on electron density integrated from the
ground up to GPS satellites (∼ 20 200 km), while the model
in (ii) is based on electron density integrated up to∼ 800 km.
However, we present Figs. 7 and 8 to compare EIA features
captured by our spline modeling technique with those by
the neural network technique of Okoh et al. (2019). The
TEC plots based on the neural network technique can be
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Figure 6. Magenta color shows diurnal TEC observed by ionosonde stations at Hermanus (panels in column i), Grahamstown (Panels in
column ii), and Louisvale (Panels in column iii). The green, blue, and red colors show TEC estimations using NeQuick 2, IRI-2016, and
spline models, respectively. Panels in rows (a–c) show diurnal TEC during the year 2013 on DOY 170, 260, and 350, respectively.

obtained from the MATLAB central website (Okoh et
al., 2019). (https://www.mathworks.com/matlabcentral/
fileexchange/69257-african-gnss-tec-afritec-model?s_tid=
prof_contriblnk, last access: 12 September 2020). We
present in Fig. 7 examples of TEC generated by the neural
network model during the year 2012 at 11:00 UT. Over the
East African sector (LT=UT+ 3), this time translates to
14:00 LT and falls within the range of LT when EIA exists
over the region (Mungufeni et al., 2018). Panels (a) and
(b) in Fig. 7 present TEC during March (DOY 81) and
September (DOY 260) equinoxes, respectively, while (c)
and (d) present TEC during June (DOY 171) and December
(DOY 347) solstices, respectively. It is important to mention
that these four days were geomagnetically quiet.

In order to generate TEC maps using our model for pur-
poses of comparing with TEC maps in Fig. 7, we noted and
used the F10.7 flux values on the days indicated in the figure.
The TEC maps generated using our model that correspond to
TEC maps presented in Fig. 7 are presented in Fig. 8.

Unlike our TEC maps in Fig. 8 which clearly show the EIA
trough (see magenta arrows) in all the seasons, the neural net-
work technique TEC maps (Okoh et al., 2019) of Fig. 7 only
clearly capture the EIA trough in the December solstice. As
pointed out before, this shortfall in the neural network TEC
model might be due to a poor amount of data to represent
the day of year during model development. Another obser-
vation that can be made from Figs. 7 and 8 is that unlike the
neural network model which yields smooth spatial TEC vari-
ation, the spline modeling technique does not yield smooth
spatial TEC variation. In real life, measurement or observed
values rarely vary smoothly. Since the spline modeling tech-

nique produces results (see Fig. 2) which demonstrate that
the modeled data match the observed data almost perfectly,
it is expected that the spatial variations of TEC in maps of
Fig. 8 are not smooth.

6 Conclusions

This study developed a model of TEC measured by COS-
MIC satellites. The TEC data were binned according to lo-
cal time, seasons, solar flux level, and spatially. The coeffi-
cients of B splines that were fitted to the binned data were
determined by means of the least-squares procedure. As ex-
pected, the modeled TEC almost perfectly matched the cor-
responding observed binned TEC data. The model was vali-
dated with independent data that were not used in the model
development. The validation revealed that (i) the observed
and the modeled TEC correlate highly (r = 0.93), (ii) the
coefficient of determination R2 which is the proportion of
variance in the observed data predicted by our model was
87 %, and (iii) the modeled TEC closely approximates the
observed TEC (RMSE of 5.05 TECU). Due to the exten-
sive input data and the modeling technique applied, we were
able to reproduce the well-known features of TEC variation
over the African region. Further validation of our model us-
ing TEC obtained from ionosonde stations over South Africa
at Hermanus, Grahamstown, and Louisville reported r val-
ues > 0.92 and RMSE < 5.56 TECU. These validation re-
sults imply that our model can estimate TEC fairly well that
would be measured by ionosondes over locations which do
not have the instrument.
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Figure 7. Neural network TEC maps during the year 2012 at 11:00 UT. Panels (a) and (b) are for March (DOY 81) and September (DOY
260) equinoxes, respectively, while (c) and (d) are for June (DOY 171) and December (DOY 347) solstices, respectively.

Figure 8. Similar to Fig. 7 but generated by the spline modeling technique. Magenta arrows indicate approximate locations of the EIA trough.
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