Articles | Volume 38, issue 6
https://doi.org/10.5194/angeo-38-1171-2020
https://doi.org/10.5194/angeo-38-1171-2020
Regular paper
 | 
10 Nov 2020
Regular paper |  | 10 Nov 2020

Analysis of different propagation models for the estimation of the topside ionosphere and plasmasphere with an ensemble Kalman filter

Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan

Related authors

Three-dimensional data assimilation for ionospheric reference scenarios
Tatjana Gerzen, Volker Wilken, David Minkwitz, Mainul M. Hoque, and Stefan Schlüter
Ann. Geophys., 35, 203–215, https://doi.org/10.5194/angeo-35-203-2017,https://doi.org/10.5194/angeo-35-203-2017, 2017
Ionospheric tomography by gradient-enhanced kriging with STEC measurements and ionosonde characteristics
David Minkwitz, Karl Gerald van den Boogaart, Tatjana Gerzen, Mainul Hoque, and Manuel Hernández-Pajares
Ann. Geophys., 34, 999–1010, https://doi.org/10.5194/angeo-34-999-2016,https://doi.org/10.5194/angeo-34-999-2016, 2016
Short summary
Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in comparison to other algebraic methods
T. Gerzen and D. Minkwitz
Ann. Geophys., 34, 97–115, https://doi.org/10.5194/angeo-34-97-2016,https://doi.org/10.5194/angeo-34-97-2016, 2016
Short summary
Tomography of the ionospheric electron density with geostatistical inversion
D. Minkwitz, K. G. van den Boogaart, T. Gerzen, and M. Hoque
Ann. Geophys., 33, 1071–1079, https://doi.org/10.5194/angeo-33-1071-2015,https://doi.org/10.5194/angeo-33-1071-2015, 2015
Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps
T. Gerzen, N. Jakowski, V. Wilken, and M. M. Hoque
Ann. Geophys., 31, 1241–1249, https://doi.org/10.5194/angeo-31-1241-2013,https://doi.org/10.5194/angeo-31-1241-2013, 2013

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Modelling and forecasting
Modeling total electron content derived from radio occultation measurements by COSMIC satellites over the African region
Patrick Mungufeni, Sripathi Samireddipalle, Yenca Migoya-Orué, and Yong Ha Kim
Ann. Geophys., 38, 1203–1215, https://doi.org/10.5194/angeo-38-1203-2020,https://doi.org/10.5194/angeo-38-1203-2020, 2020
Short summary
The very low-frequency transmitter radio wave anomalies related to the 2010 Ms 7.1 Yushu earthquake observed by the DEMETER satellite and the possible mechanism
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020,https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Comparison of quiet-time ionospheric total electron content from the IRI-2016 model and from gridded and station-level GPS observations
Gizaw Mengistu Tsidu and Mulugeta Melaku Zegeye
Ann. Geophys., 38, 725–748, https://doi.org/10.5194/angeo-38-725-2020,https://doi.org/10.5194/angeo-38-725-2020, 2020
Short summary
Performance of the IRI-2016 over Santa Maria, a Brazilian low-latitude station located in the central region of the South American Magnetic Anomaly (SAMA)
Juliano Moro, Jiyao Xu, Clezio Marcos Denardini, Laysa Cristina Araújo Resende, Régia Pereira Silva, Sony Su Chen, Giorgio Arlan da Silva Picanço, Liu Zhengkuan, Hui Li, Chunxiao Yan, Chi Wang, and Nelson Jorge Schuch
Ann. Geophys., 38, 457–466, https://doi.org/10.5194/angeo-38-457-2020,https://doi.org/10.5194/angeo-38-457-2020, 2020
Short summary
High-resolution vertical total electron content maps based on multi-scale B-spline representations
Andreas Goss, Michael Schmidt, Eren Erdogan, Barbara Görres, and Florian Seitz
Ann. Geophys., 37, 699–717, https://doi.org/10.5194/angeo-37-699-2019,https://doi.org/10.5194/angeo-37-699-2019, 2019
Short summary

Cited articles

Angling, M. J.: First assimilation of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM), Ann. Geophys., 26, 353–359, 2008. 
Angling, M. J. and Cannon, P. S.: Assimilation of radio occultation measurements into background ionospheric models, Radio Sci., 39, RS1S08, https://doi.org/10.1029/2002RS002819, 2004. 
Banville, S.: Improved convergence for GNSS precise point positioning, Ph.D. dissertation, Department of Geodesy and Geomatics Engineering, Technical Report No. 294, University of New Brunswick, Fredericton, New Brunswick, Canada, available at: https://unbscholar.lib.unb.ca/islandora/object/unbscholar:6500 (last access: 2 November 2020) 2014. 
Bidaine B. and R. Warnant: Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data, Adv. Space Res., 45, 1122–1128, 2010. 
Bilitza, D., McKinnell, L.-A., Reinisch, B., and Fuller-Rowell, T.: The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85, 909–920, https://doi.org/10.1007/s00190-010-0427-x, 2011. 
Download
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.