Articles | Volume 38, issue 6
https://doi.org/10.5194/angeo-38-1171-2020
https://doi.org/10.5194/angeo-38-1171-2020
Regular paper
 | 
10 Nov 2020
Regular paper |  | 10 Nov 2020

Analysis of different propagation models for the estimation of the topside ionosphere and plasmasphere with an ensemble Kalman filter

Tatjana Gerzen, David Minkwitz, Michael Schmidt, and Eren Erdogan

Cited articles

Angling, M. J.: First assimilation of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM), Ann. Geophys., 26, 353–359, 2008. 
Angling, M. J. and Cannon, P. S.: Assimilation of radio occultation measurements into background ionospheric models, Radio Sci., 39, RS1S08, https://doi.org/10.1029/2002RS002819, 2004. 
Banville, S.: Improved convergence for GNSS precise point positioning, Ph.D. dissertation, Department of Geodesy and Geomatics Engineering, Technical Report No. 294, University of New Brunswick, Fredericton, New Brunswick, Canada, available at: https://unbscholar.lib.unb.ca/islandora/object/unbscholar:6500 (last access: 2 November 2020) 2014. 
Bidaine B. and R. Warnant: Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data, Adv. Space Res., 45, 1122–1128, 2010. 
Bilitza, D., McKinnell, L.-A., Reinisch, B., and Fuller-Rowell, T.: The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85, 909–920, https://doi.org/10.1007/s00190-010-0427-x, 2011. 
Download
Short summary
We focus on reconstructing the topside ionosphere and plasmasphere and assimilating the space-based Global Navigation Satellite System slant total electron content (STEC) measurements with an ensemble Kalman filter (EnKF). We present methods for realizing the propagation step without a physical model. We investigate the capability of our estimations to reconstruct independent STEC and electron density measurements. We compare the EnKF approach with SMART+ and the 3D ionosphere model NeQuick.
Share