Articles | Volume 37, issue 6
https://doi.org/10.5194/angeo-37-1197-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-1197-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Terrestrial ion escape and relevant circulation in space
Swedish Institute of Space Physics, Box 812, 98128 Kiruna, Sweden
Invited contribution by Masatoshi Yamauchi, recipient of the EGU Julius Bartels Medal 2019.
Related authors
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277, https://doi.org/10.5194/egusphere-2024-3277, 2024
Short summary
Short summary
Our research explored the "shock aurora," caused by the impact of solar wind particles on Earth's magnetic field. On February 26, 2023, we observed this rare event on the nightside, where such observations are difficult. Ground-based cameras revealed new structural features, including undulating and jumping patterns. These results provide fresh insights into the complex interactions between the solar wind and Earth's magnetosphere, enhancing our understanding of space weather effects.
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Short summary
The paper reports a new finding on space weather effects at around 70–75 ° geographic latitudes. We found that X flares cause an unexpectedly strong ionospheric current driven by solar flares. The effect is as large as a substorm that is known to cause strong auroras and may enhance ongoing substorms. However, it has been overlooked in the past due to the narrow latitudinal range at high latitudes. Since severe magnetic storms often occur with X flares, this may cause geomagnetic hazards.
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277, https://doi.org/10.5194/egusphere-2024-3277, 2024
Short summary
Short summary
Our research explored the "shock aurora," caused by the impact of solar wind particles on Earth's magnetic field. On February 26, 2023, we observed this rare event on the nightside, where such observations are difficult. Ground-based cameras revealed new structural features, including undulating and jumping patterns. These results provide fresh insights into the complex interactions between the solar wind and Earth's magnetosphere, enhancing our understanding of space weather effects.
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Short summary
The paper reports a new finding on space weather effects at around 70–75 ° geographic latitudes. We found that X flares cause an unexpectedly strong ionospheric current driven by solar flares. The effect is as large as a substorm that is known to cause strong auroras and may enhance ongoing substorms. However, it has been overlooked in the past due to the narrow latitudinal range at high latitudes. Since severe magnetic storms often occur with X flares, this may cause geomagnetic hazards.
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Transport processes
Electromotive force in the solar wind
Yasuhito Narita
Ann. Geophys., 39, 759–768, https://doi.org/10.5194/angeo-39-759-2021, https://doi.org/10.5194/angeo-39-759-2021, 2021
Short summary
Short summary
The concept of electromotive force appears in various electromagnetic applications in geophysical and astrophysical fluid studies. The electromotive force is being recognized as a useful tool to construct a more complete picture of turbulent space plasma and has the potential to test for the fundamental processes of dynamo mechanism in space.
Cited articles
Abe, T., Whalen, B. A., Yau, A. W., Horita, R. E., Watanabe, S., and Sagawa, E.:
EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind,
J. Geophys. Res., 98, 11191–11203, https://doi.org/10.1029/92JA01971, 1993.
Airapetian, V. S. and Usmanov, A.: Reconstructing the Solar Wind from Its Early History to Current Epoch,
Astrophys. J. Lett., 817, L24, https://doi.org/10.3847/2041-8205/817/2/L24, 2016.
André, M.: Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance,
Phys. Scripta, 90, 128005, https://doi.org/10.1088/0031-8949/90/12/128005, 2015.
Araki, T., Fujitani, S., Emoto, M., Yumoto, K., Shiokawa, K., Ichinose, T., Luehr, H., and Orr, D.:
Anomalous sudden commencement on March 24, 1991,
J. Geophys. Res., 102, 14075–14086, https://doi.org/10.1029/96JA03637, 1997.
Arvelius, S., Yamauchi, M., Nilsson, H., Lundin, R., Hobara, Y., Rème, H., Bavassano-Cattaneo, M. B., Paschmann, G., Korth, A., Kistler, L. M., and Parks, G. K.: Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS, Ann. Geophys., 23, 1909–1916, https://doi.org/10.5194/angeo-23-1909-2005, 2005.
Blanc, M., Horwitz, J. L., Blake, J. B., Daglis, I., Lemaire, J. F., Moldwin, M. B., Orsini, S., Thorne, R. M., and Wolfe, R. A.:
Source and loss processes in the inner magnetosphere,
Space Sci. Rev., 88, 137–206, https://doi.org/10.1023/A:1005203817354, 1999.
Buzulukova, N. Y., Galperin, Y. I., Kovrazhkin, R. A., Glazunov, A. L., Vladimirova, G. A., Stenuit, H., Sauvaud, J. A., and Delcourt, D. C.: Two types of ion spectral gaps in the quiet inner magnetosphere: Interball-2 observations and modeling, Ann. Geophys., 20, 349–364, https://doi.org/10.5194/angeo-20-349-2002, 2002.
Cattell, C., Johnson, L., Bergmann, R., Klumpar, D., Carlson, C., McFadden, J., Strangeway, R., Ergun, R., Sigsbee, K., and Pfaff, R.:
FAST observations of discrete electrostatic waves in association with down-going ion beams in the auroral zone,
J. Geophys. Res., 107, 1238, https://doi.org/10.1029/2001JA000254, 2002.
Chappell, C. R.: Recent satellite measurements of the morphology and dynamics of the plasmasphere,
Rev. Geophys., 10, 951–979, https://doi.org/10.1029/RG010i004p00951, 1972.
Chappell, C. R., Olsen, R. C., Green, J. L., Johnson, J. F. E., and Waite Jr., J. H.: The discovery of nitrogen ions in the Earth's magnetosphere,
Geophys. Res. Lett., 9, 937–940, https://doi.org/10.1029/GL009i009p00937, 1982.
Chappell, C. R., Moore, T. E., and Waite, J. H.: The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere,
J. Geophys. Res., 92, 5896–5910, https://doi.org/10.1029/JA092iA06p05896, 1987.
Chappell, C. R., Huddleston, M. M., Moore, T. E., Giles, B. L., and Delcourt, D. C.: Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere,
J. Geophys. Res., 113, A09206, https://doi.org/10.1029/2007JA012945, 2008.
Claudepierre, S. G., Chen, M. W., Roeder, J. L., and Fennell, J. F.: An empirical model of ion plasma in the inner magnetosphere derived from CRRES/MICS measurements,
J. Geophys. Res., 121, 11780–11797, https://doi.org/10.1002/2016JA023468, 2016.
Cladis, J. B.: Parallel acceleration and transport of ions from polar ionosphere to plasma sheet,
Geophys. Res. Lett., 13, 893–896, https://doi.org/10.1029/GL013i009p00893, 1986.
Christon, S. P., Eastman, T. E., Doke, T., Frank, L. A., Gloeckler, G., Kojima, H., Kokubun, S., Lui, A. T. Y., Matsumoto, H., McEntire, R. W., Mukai, T., Nylund, S. R., Paterson, W. R., Roelof, E. C., Saito, Y., Sotirelis, T., Tsuruda, K., Williams, D. J., and Yamamoto, T.:
Magnetospheric plasma regimes identified using Geotail measurements: 2. Statistics, spatial distribution, and geomagnetic dependence,
J. Geophys. Res., 103, 23521–23542, https://doi.org/10.1029/98JA01914, 1998.
Collin, H. L., Quinn, J. M., and Cladis, J. B.: An empirical static model of low energy ring current ions,
Geophys. Res. Lett., 20, 141–144, https://doi.org/10.1029/93GL00066, 1993.
Craven, P. D., Gallagher, D. L., and Comfort, R. H.: Relative concentration of He+ in the inner magnetosphere as observed by the DE 1 retarding ion mass spectrometer,
J. Geophys. Res., 102, 2279–2289, https://doi.org/10.1029/96JA02176, 1997.
Cully, C. M., Donovan, E. F., Yau, A. W., and Arkos, G. G.: Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions,
J. Geophys. Res., 108, 1093, https://doi.org/10.1029/2001JA009200, 2003.
Daglis, I. A., Thorne, R. M., Baumjohann, W., and Orsini, S.: The terrestrial ring current: Origin, formation, and decay,
Rev. Geophys., 37, 407–438, https://doi.org/10.1029/1999RG900009, 1999.
Dandouras, I.: Detection of a plasmaspheric wind in the Earth's magnetosphere by the Cluster spacecraft, Ann. Geophys., 31, 1143–1153, https://doi.org/10.5194/angeo-31-1143-2013, 2013.
Dandouras, I., Yamauchi, M., and the ESCAPE proposal team: European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE), Mission proposals to 2016 ESA's call for M5 Mission, available at:
http://cluster.irap.omp.eu/public/ESCAPE/ESCAPE_M5_Proposal_V1.1.pdf (last access: 11 December 2019), 2016.
Dandouras, I., Yamauchi, M., De Keyser, J., Marghitu, O., Reme, H., Yoshikawa, I., Sakanoi, T., and the ESCAPE proposal team:
ESCAPE: A mission proposal for ESA-M5 to systematically study Exosphere and atmospheric escape using European, Japanese, and US instruments,
JAXA document SA6000118033, S10-001, available at:
https://repository.exst.jaxa.jp/dspace/handle/a-is/876320 (last access: 11 December 2019), 2018 (in Japanese).
Darrouzet, F., De Keyser, J., Décréau, P. M. E., El Lemdani-Mazouz, F., and Vallières, X.: Statistical analysis of plasmaspheric plumes with Cluster/WHISPER observations, Ann. Geophys., 26, 2403–2417, https://doi.org/10.5194/angeo-26-2403-2008, 2008.
Darrouzet, F., Gallagher, D. L., André, M., Carpenter, D. L., Dandouras, I., Décréau, P. M. E., De Keyser, J., Denton, R. E., Foster, J. C., Goldstein, J., Moldwin, M. B., Reinisch, B. W., Sandel, B. R., and Tu, J.:
Plasmaspheric density structures and dynamics: Properties observed by the CLUSTER and IMAGE missions,
Space Sci. Rev., 145, 55–106, https://doi.org/10.1007/s11214-008-9438-9, 2009.
Dubinin, E., Fraenz, M., Woch, J., Barabash, S., Lundin, R., and Yamauchi, M.:
Hydrogen exosphere at Mars: Pickup protons and their acceleration at the bow shock,
Geophys. Res. Lett., 33, L22103, https://doi.org/10.1029/2006GL027799, 2006.
Dungey, J. W.: Interplanetary magnetic field and the auroral zones,
Phys. Rev. Lett., 6, 47, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Ebihara, Y. and Ejiri, M.: Numerical Simulation of the Ring Current: Review,
Space Sci. Rev., 105, 377–452, https://doi.org/10.1023/A:1023905607888, 2003.
Ebihara, Y., Yamauchi, M., Nilsson, H., Lundin, R., and Ejiri, M.:
Wedge-like dispersion of sub-keV ions in the dayside magnetosphere: Particle simulation and Viking observation,
J. Geophys. Res., 106, 29571–29584, https://doi.org/10.1029/2000JA000227, 2001.
Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Grande, M., Fennell, J. F., Roeder, J. L., Weimer, D. R., and Fritz, T. A.: Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event, Ann. Geophys., 22, 1297–1304, https://doi.org/10.5194/angeo-22-1297-2004, 2004.
Ebihara, Y., Kistler, L. M., and Eliasson, L.:
Imaging cold ions in the plasma sheet from the Equator-S satellite,
Geophys. Res. Lett., 35, L15103, https://doi.org/10.1029/2008GL034357, 2008.
Ejiri, M.: Trajectory traces of charged particles in the magnetosphere,
J. Geophys. Res., 83, 4798–4810, https://doi.org/10.1029/JA083iA10p04798, 1978.
Ejiri, M., Hoffman, R. A., and Smith, P. H.:
Energetic particle penetration into the inner magnetosphere,
J. Geophys. Res., 85, 653–663, https://doi.org/10.1029/JA085iA02p00653, 1980.
Eklund, U., Lundin, R., and Sandahl, I.: Measurements of O+ in the high latitude magnetosheath,
Phys. Chem. Earth, 22, 639–644, https://doi.org/10.1016/S0079-1946(97)00189-4, 1997.
Engwall, E., Eriksson, A. I., André, M., Dandouras, I., Paschmann, G., Quinn, J., and Torkar, K.:
Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations,
Geophys. Res. Lett., 33, L06110, https://doi.org/10.1029/2005GL025179, 2006.
Engwall, E., Eriksson, A. I., Cully, C. M., André, M., Puhl-Quinn, P. A., Vaith, H., and Torbert, R.: Survey of cold ionospheric outflows in the magnetotail, Ann. Geophys., 27, 3185–3201, https://doi.org/10.5194/angeo-27-3185-2009, 2009.
Eliasson, L., André, M., Eriksson, A., Nordqvist, P., Norberg, O., Lundin, R., Holback, B., Koskinen, H., Borg, H., and Boehm, M.:
Freja observations of heating and precipitation of positive ions,
Geophys. Res. Lett., 21, 1911–1914, https://doi.org/10.1029/94GL01067, 1994.
European Space Agency: Cluster plotting software and data, Cluster Science Archive, available at: https://www.cosmos.esa.int/web/csa/access (last access: 11 December 2019), 2013.
Fok, M.-C., Kozyra, J. U., Nagy, A. F., and Cravens, T. E.: Lifetime of ring current particles due to coulomb collisions in the plasmasphere,
J. Geophys. Res., 96, 7861–7867, https://doi.org/10.1029/90JA02620, 1991.
Fuselier, S. A., Burch, J. L., Mukherjee, J., Genestreti, K. J., Vines, S. K., Gomez, R., Goldstein, J., Trattner, K. J., Petrinec, S. M., Lavraud, B., and Strangeway, R. J.:
Magnetospheric ion influence at the dayside magnetopause,
J. Geophys. Res.-Space, 122, 8617–8631, https://doi.org/10.1002/2017JA024515, 2017.
Gallagher, D. L. and Comfort, R. H.: Unsolved problems in plasmasphere refilling, J. Geophys. Res.-Space, 121, 1447–1451,
https://doi.org/10.1002/2015JA022279, 2016.
Giang, T. T., Hamrin, M., Yamauchi, M., Lundin, R., Nilsson, H., Ebihara, Y., Rème, H., Dandouras, I., Vallat, C., Bavassano-Cattaneo, M. B., Klecker, B., Korth, A., Kistler, L. M., and McCarthy, M.: Outflowing protons and heavy ions as a source for the sub-keV ring current, Ann. Geophys., 27, 839–849, https://doi.org/10.5194/angeo-27-839-2009, 2009.
Glocer, A., Toth, G., and Fok, M.-C.: Including kinetic ion effects in the coupled global ionospheric outflow solution,
J. Geophys. Res., 123, 2851–2871, https://doi.org/10.1002/2018JA025241, 2018.
Goldstein, J.: Plasmasphere response: Tutorial and review of recent imaging results,
Space Sci. Rev., 124, 203, https://doi.org/10.1007/s11214-006-9105-y, 2006.
Grünwaldt, H., Neugebauer, M., Hilchenbach, M., Bochsler, P., Hovestadt, D., Bürgi, A., Ipavich, F. M., Reiche, K.‐U., Axford, W. I., Balsiger, H., Galvin, A. B., Geiss, J., Gliem, F., Gloeckler, G., Hsieh, K. C., Kallenbach, R., Klecker, B., Livi, S., Lee, M. A., Managadze, G. G., Marsch, E., Möbius, E., Scholer, M., Verigin, M. I., Wilken, B., and Wurz, P.: Venus tail ray observation near Earth, Geophys. Res. Lett., 24, 1163–1166, https://doi.org/10.1029/97GL01159, 1997.
Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Studemann, W., Wilken, B., and Kremser, G.:
Ring current development during the great geomagnetic storm of February 1986,
J. Geophys. Res., 93, 14343–14355, https://doi.org/10.1029/JA093iA12p14343, 1988.
Harrison, J., Kaiser, A., and Vanden, J. M.: Atmospheric oxygen level and the evolution of insect body size,
P. R. Soc. B, 277, 1937–1946, https://doi.org/10.1098/rspb.2010.0001, 2010.
Hill, S.: Influence of atmospheric oxygen concentration on acetylene reduction and efficiency of nitrogen fixation in intact Klebsiella pneumoniae,
Microbiology, 93, 335–345, https://doi.org/10.1099/00221287-93-2-335, 1976.
Hirahara, M., Mukai, T., Terasawa, T., Machida, S., Saito, Y., Yamamoto, T., and Kokubun, S.:
Cold dense ion flows with multiple components observed in the distant tail lobe by Geotail,
J. Geophys. Res., 101, 7769–7784, https://doi.org/10.1029/95JA03165, 1996.
Hirahara, M., Mukai, T., Sagawa, E., Kaya, N., and Hayakawa, H.: Multiple energy-dispersed ion precipitations in low-latitude auroral oval: Evidence of E×B drift effect and up ward flowing ion contribution,
J. Geophys. Res., 102, 2513–2530, https://doi.org/10.1029/96JA03148, 1997.
Hirahara, M., Seki, K., Saito, Y., and Mukai, T.: Periodic emergence of multicomposition cold ions modulated by geomagnetic field line oscillations in the near-Earth magnetosphere,
J. Geophys. Res., 109, A03211, https://doi.org/10.1029/2003JA010141, 2004.
Horwitz, J. L. and Chappell, C. R.: Observations of warm plasma in the dayside plasma trough at geosynchronous orbit,
J. Geophys. Res., 84, 7075–7090, https://doi.org/10.1029/JA084iA12p07075, 1979.
Hultqvist, B.: Downward ion acceleration at auroral latitudes: cause of parallel electric field, Ann. Geophys., 20, 1117–1136, https://doi.org/10.5194/angeo-20-1117-2002, 2002.
Hultqvist, B., Aparicio, B., Borg, H., Arnoldy, R., and Moore, T. E.: Decrease of keV electron and ion fluxes in the dayside magnetosphere during the early phase of magnetospheric disturbances,
Planet. Space Sci., 29, 107–126, https://doi.org/10.1016/0032-0633(81)90143-4, 1981.
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin P., Chaufray, J.-Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez-Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell, D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W., Sauvaud, J.-A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A.I.F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., and Zurek, R.:
The Mars atmosphere and volatile evolution (MAVEN) mission,
Space. Sci. Rev., 195, 3–48, https://doi.org/10.1007/s11214-015-0139-x, 2015.
Jordanova, V. K., Farrugia, C. J., Quinn, J. M., Torbert, R. B., Borovsky, J. E., Sheldon, R. B., and Peterson, W. K.:
Simulation of off-equatorial ring current ion spectra measured by Polar for a moderate storm at solar minimum,
J. Geophys. Res., 104, 429–436, https://doi.org/10.1029/98JA02658, 1999.
Kistler, L. M. and Mouikis, C. G.: The inner magnetosphere ion composi-tion and local time distribution over asolar cycle,
J. Geophys. Res., 121, 2009–2032, https://doi.org/10.1002/2015JA021883, 2016.
Kistler, L. M., Mouikis, C., Möbius, E., Klecker, B., Sauvaud, J. A., Rème, H., Korth, A., Marcucci, M. F., Lundin, R., Parks, G. K., and Balogh, A.:
Contribution of nonadiabatic ions to the cross-tail current in an O+ dominated thin current sheet,
J. Geophys. Res., 110, A06213, https://doi.org/10.1029/2004JA010653, 2005.
Kistler, L. M., Galvin, A. B., Popecki, M. A., Simunac, K. D. C., Farrugia, C., Moebius, E., Lee, M. A., Blush, L. M., Bochsler, P., Wurz, P., Klecker, B., Wimmer-Schweingruber, R. F., Opitz, A., Sauvaud, J.-A., Thompson, B., and Russell, C. T.:
Escape of O+ through the distant tail plasma sheet,
Geophys. Res. Lett., 37, L21101, https://doi.org/10.1029/2010GL045075, 2010.
Kovrazhkin, R. A., Sauvaud, J.-A., and Delcourt, D. C.: INTERBALL-Auroral observations of 0.1–12 keV ion gaps in the diffuse auroral zone, Ann. Geophys., 17, 734–742, https://doi.org/10.1007/s00585-999-0734-9, 1999.
Krauss, S., Fichtinger, B., Lammer, H., Hausleitner, W., Kulikov, Yu. N., Ribas, I., Shematovich, V. I., Bisikalo, D., Lichtenegger, H. I. M., Zaqarashvili, T. V., Khodachenko, M. L., and Hanslmeier, A.: Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere, Ann. Geophys., 30, 1129–1141, https://doi.org/10.5194/angeo-30-1129-2012, 2012.
Kronberg, E. A., Ashour-Abdalla, M., Dandouras, I., and Delcourt, D. C.:
Circulation of heavy ions and their dynamical effects in the magnetosphere: recent observations and models,
Space Sci. Rev., 184, 173–235, https://doi.org/10.1007/s11214-014-0104-0, 2014.
Lakhina, G. S. and Tsurutani, B. T.: Satellite drag effects due to uplifted oxygen neutrals during super magnetic storms, Nonlin. Processes Geophys., 24, 745–750, https://doi.org/10.5194/npg-24-745-2017, 2017.
Lennartsson, O. W.: ISEE ion composition data with implications for solar wind entry into Earth's magnetotail,
Space Sci. Rev., 80, 305–323, https://doi.org/10.1023/A:1004982122553, 1997.
Lennartsson, O. W.: Ion composition aspects of magnetotail plasma flows,
J. Geophys. Res., 106, 15621–15634, https://doi.org/10.1029/2000JA000427, 2001.
Lennartsson, O. W., Collin, H. L., and Peterson, W. K.: Solar wind control of Earth's H+ and O+ outflow rates in the 15 eV to 33 keV energy range,
J. Geophys. Res., 109, A12212, https://doi.org/10.1029/2004JA010690, 2004.
Loesche, W. J.: Oxygen sensitivity of various anaerobic bacteria,
Appl. Microbiol., 18, 723–727, 1969.
Lotko, W.: The magnetosphere-ionosphere system from the perspective of plasma circulation: A tutorial,
J. Atmos. Sol.-Terr. Phy., 69, 191–211, https://doi.org/10.1016/j.jastp.2006.08.011, 2007.
Lundin, R.: Plasma composition and flow characteristics in the magnetospheric boundary layers connected to the polar cusp,
in: The Polar Cusp, edited by: Holtet, J. A. and Egeland, A., 9–33, D. Reidel Publishing Comp., Dordrecht, 1985.
Lundin, R. and Guglielmi, A.: Ponderomotive forces in cosmos,
Space Sci. Rev., 127, 1–116, https://doi.org/10.1007/s11214-006-8314-8, 2006.
Lundin, R., Yamauchi, M., Woch, J., and Marklund, G.: Boundary layer polarization and voltage in the 14 MLT region,
J. Geophys. Res., 100, 7587–7597, https://doi.org/10.1029/94JA02523, 1995.
Maezawa, K. and Hori, T.: The DistantMagnetotail: Its Structure, IMF Dependence and Thermal Properties,
in: New Perspectives on the Earth's Magnetotail, edited by: Nishida, A., Baker, D. N., and Cowley, S. W. H., 1–19, AGU, https://doi.org/10.1029/GM105p0001, 1998.
Maggiolo, R. and Kistler, L. M.; Spatial variation in the plasma sheetcomposition: Dependence on geomag-netic and solar activity,
J. Geophys. Res., 119, 2836–2857, https://doi.org/10.1002/2013JA019517, 2014.
Maggiolo, R.: Auroral arcs and ion outflow,
in: Auroral Dynamics and Space Weather, edited by: Zhang, Y. and Paxton, L. J., 39–58, AGU, https://doi.org/10.1002/9781118978719.ch4, 2015.
Marcucci, M. F., Bavassano-Cattaneo, M. B., Pallocchia, G., and Amata, E.:
Energetic magnetospheric oxygen in the magnetosheath and its response to IMF orientation: Cluster observations,
J. Geophys. Res., 109, A07203, https://doi.org/10.1029/2003JA010312, 2004.
Meier, R. R., Picone, J. M., Drob, D., Bishop, J., Emmert, J. T., Lean, J. L., Stephan, A. W., Strickland, D. J., Christensen, A. B., Paxton, L. J., Morrison, D., Wolven, Kil, H., Thomas, B., Woods, N., Crowley, G., and Gibson, S. T.: Remote Sensing of Earth's Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature,
Earth Space Sci., 2, 1–37, https://doi.org/10.1002/2014EA000035, 2015.
Moore, T. E. and Delcourt, D. C.: The geopause,
Rev. Geophys., 33, 175–209, https://doi.org/10.1029/95RG00872, 1995.
Moore, T. E. and Horwitz, J. L.: Stellar ablation of planetary atmospheres,
Rev. Geophys., 45, RG3002, https://doi.org/10.1029/2005RG000194, 2007.
Moore, T. E., Lundin, R., Alcayde, D., Andre, M., Ganguli, S. B., Temerin, M., and Yau, A.:
Source processes in the high-latitute ionosphere,
Space Sci. Rev., 88, 7–84, https://doi.org/10.1023/A:1005299616446, 1999a.
Moore, T. E., Peterson, W. K., Russell, C. T., Chandler, M. O., Collier, M. R., Collin, H. L., Craven, P. D., Fitzenreiter, R., Giles, B. L., and Pollock, C. J.:
Ionospheric mass ejection in response to a CME,
Geophys. Res. Lett., 26, 2339–2342, https://doi.org/10.1029/1999GL900456, 1999b.
Moore, T. E., Fok, M.-C., and Garcia-Sage, K.: The ionospheric outflow feedback loop,
J. Atmos. Sol.-Terr. Phy., 115–116, 59–66, https://doi.org/10.1016/j.jastp.2014.02.002, 2014.
Möbius, E., Tang, L., Kistler, L. M., and Popecki, M.:
Species dependent energies in upward directed ion beams over auroral arcs as observed with FAST TEAMS,
Geophys. Res. Lett., 25, 2029–2032, https://doi.org/10.1029/98GL00381, 1998.
Newell, P. T. and Meng, C. I.: Substorm introduction of 1 keV magnetospheric ions into the inner plasmasphere,
J. Geophys. Res., 91, 11133–11145, https://doi.org/10.1029/JA091iA10p11133, 1986.
Newell, P. T., Sotirelis, T., and Wing, S.: Seasonal variations in diffuse, monoenergetic, and broadband aurora,
J. Geophys. Res., 115, A03216, https://doi.org/10.1029/2009JA014805, 2010.
Nilsson, H., Waara, M., Arvelius, S., Marghitu, O., Bouhram, M., Hobara, Y., Yamauchi, M., Lundin, R., Rème, H., Sauvaud, J.-A., Dandouras, I., Balogh, A., Kistler, L. M., Klecker, B., Carlson, C. W., Bavassano-Cattaneo, M. B., and Korth, A.: Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study, Ann. Geophys., 24, 1099–1112, https://doi.org/10.5194/angeo-24-1099-2006, 2006.
Nilsson, H., Barghouthi, I. A., Slapak, R., Eriksson, A., and André, M.:
Hot and cold ion outflow: spatial distribution of ion heating,
J. Geophys. Res., 117, A11201, https://doi.org/10.1029/2012JA017974, 2012.
Nilsson, H., Hamrin, M., Pitkänen, T., Karlsson, T., Slapak, R., Andersson, L., Gunell, H., Schillings, A., and Vaivads, A.:
Oxygen ion response to proton bursty bulk flows,
J. Geophys. Res., 121, 7535–7546, https://doi.org/10.1002/2016JA022498, 2016.
Norqvist, P., André, M., Eliasson, L., Eriksson, A. I., Blomberg, L., Lühr, H., and Clemmons, J. H.:
Ion cyclotron heating in the dayside magnetosphere,
J. Geophys. Res., 101, 13179–13193, https://doi.org/10.1029/95JA03596, 1996.
Norqvist, P., Andre, M., and Tyrland, M.: A statistical study of ion energization mechanisms in the auroral region,
J. Geophys. Res., 103, 23459–23474, https://doi.org/10.1029/98JA02076, 1998.
Nosé, M., Ieda, A., and Christon, S. P.: Geotail observations of plasma sheet ion composition over 16 years: On variations of average plasma ion mass and O+ triggering substorm model,
J. Geophys. Res., 114, A07223, https://doi.org/10.1029/2009JA014203, 2009.
Ohtani, S., Potemra, T. A., Newell, P. T., Zanetti, L. J., Iijima, T., Watanabe, M., Yamauchi, M., Elphinstone, R. D., de la Beaujardiere, O., and Blomberg, L. G.:
Simultaneous prenoon and postnoon observations of three field-aligned current systems from Viking and DMSP-F7,
J. Geophys. Res., 100, 119–136, https://doi.org/10.1029/94JA02073, 1995.
Ohtani, S., Shay, M. A., and Mukai, T.: Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations,
J. Geophys. Res., 109, A03210, https://doi.org/10.1029/2003JA010002, 2004.
Olsen, R. C.: The density minimum at the Earth's magnetic equator,
J. Geophys. Res., 97, 1135–1150, https://doi.org/10.1029/91JA02719, 1992.
Olsen, R. C., Shawhan, S. D., Gallagher, D. L., Green, J. L., Chappell, C. R., and Anderson, R. R.:
Plasma observations at the Earth's magnetic equator,
J. Geophys. Res., 92, 2385–2407, https://doi.org/10.1029/JA092iA03p02385, 1987.
Øieroset, M., Yamauchi, M., Liszka, L., and Christon, S. P.: Energetic ion outflow from the dayside ionosphere and its relationship to the interplanetary magnetic field and substorm activity,
J. Atmos. Sol.-Terr. Phy., 62, 485–493, https://doi.org/10.1016/S1364-6826(00)00016-X, 2000.
Opitz, A., Sauvaud, J.-A., Klassen, A., Gomez-Herrero, R., Bucik, R., Kistler, L. M., Jacquey, C., Luhmann, J., Glenn Mason, G., Primoz Kajdic, P., and Lavraud, B.:
Solar wind control of the terrestrial magnetotail as seen by STEREO,
J. Geophys. Res., 119, 6342–6355, https://doi.org/10.1002/2014JA019988, 2014.
Park, C. G.: Some features of plasma distribution in plasmasphere deduced from antarctic whistlers, J. Geophys. Res., 79, 169–173, https://doi.org/10.1029/JA079i001p00169, 1974.
Peterson, W. K., Collin, H. L., Yau, A. W., and Lennartsson, O. W.: Polar/TIMAS observations of suprathermal ion outflow during solar minimum conditions,
J. Geophys. Res., 106, 6059, https://doi.org/10.1029/2000JA003006, 2001.
Peterson, W. K., Collin, H. L., Lennartsson, O. W., and Yau, A. W.: Quiet time solar illumination effects on the fluxes and characteristic energies of ionospheric outflow,
J. Geophys. Res., 111, A11S05, https://doi.org/10.1029/2005JA011596, 2006.
Peterson, W. K., Andersson, L., Callahan, B. C., Collin, H. L., Scudder, J. D., and Yau, A. W.:
Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates,
J. Geophys. Res., 113, A07222, https://doi.org/10.1029/2008JA013059, 2008.
Potemra, T. A.: Sources of large-scale Birkeland currents,
in: Physical signatures of magnetospheric boundary layer process, edited by: Holtet, J. A. and Egeland, A., 3–27, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1994.
Pollock, C. J., Chandler, M. O., Moore, T. E., Waite, J. H., Chappell, C. R., and Gurnett, D. A.:
A survey of upwelling ion event characteristics,
J. Geophys. Res., 95, 18969–18980, https://doi.org/10.1029/JA095iA11p18969, 1990.
Quinn, J. M. and McIlwain, C. E.: Bouncing ion clusters in the Earth's magnetosphere,
J. Geophys. Res., 84, 7365–7370, https://doi.org/10.1029/JA084iA12p07365, 1979.
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d'Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001.
Ribas, S., Guinan, E. F., Güdel, M., and Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å),
Astrophys. J., 622, 680–694, https://doi.org/10.1086/427977, 2005.
Sandel, B. R.: Composition of the plasmasphereand implications for refilling,
Geophys. Res. Lett., 38, L14104, https://doi.org/10.1029/2011GL048022, 2011.
Sandel, B. R. and Denton, M. H.: Global view of refilling of the plasmasphere,
Geophys. Res. Lett., 34, L17102, https://doi.org/10.1029/2007GL030669, 2007.
Sandhu, J. K., Yeoman, T. K., Fear, R. C., and Dandouras, I.: A statistical study of magnetospheric ion composition along the geomagnetic field using the Cluster spacecraft for L values between 5.9 and 9.5,
J. Geophys. Res., 121, 2194–2208, https://doi.org/10.1002/2015JA022261, 2016.
Sauvaud, J.-A., Crasnier, J., Mouala, K., Kovrazhkin, R. A., and Jorjio, N. V.:
Morning sector ion precipitation following substorm injections,
J. Geophys. Res., 86, 3430–3438, https://doi.org/10.1029/JA086iA05p03430, 1981.
Sauvaud, J.-A., Popescu, D., Delcourt, D. C., Parks, G. K., Brittnacher, M., Sergeev, V., Kovrazhkin, R. A., Mukai, T., and Kokubun, S.:
Sporadic plasma sheet ion injections into the high-altitude auroral bulge: Satellite observations,
J. Geophys. Res., 104, 28565–28586, https://doi.org/10.1029/1999JA900293, 1999.
Sauvaud, J.-A., Lundin, R., Rème, H., McFadden, J. P., Carlson, C., Parks, G. K., Möbius, E., Kistler, L. M., Klecker, B., Amata, E., DiLellis, A. M., Formisano, V., Bosqued, J. M., Dandouras, I., Décréau, P., Dunlop, M., Eliasson, L., Korth, A., Lavraud, B., and McCarthy, M.: Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results, Ann. Geophys., 19, 1523–1532, https://doi.org/10.5194/angeo-19-1523-2001, 2001.
Sauvaud, J.-A., Louarn, P., Fruit, G., Stenuit, H.,
Vallat, C., Dandouras, I., Rème, H., André, M., Balogh, A., Dunlop, M., Kistler, L., Möbius, E., Mouikis, C., Klecker, B., Parks, G. K., McFadden, J., Carlson, C., Marcucci, F., Pallocchia, G., Lundin, R., Korth, A., and McCarthy, M.:
Case studies of the dynamics of ionospheric ions in the Earth's magnetotail,
J. Geophys. Res., 109, A01212, https://doi.org/10.1029/2003JA009996, 2004.
Schillings, A., Nilsson, H., Slapak, R., Yamauchi, M., and Westerberg, L.-G.: Relative outflow enhancements during major geomagnetic storms – Cluster observations, Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, 2017.
Schillings, A., Slapak, R., Nilsson, N., Yamauchi, M., Dandouras, I., and Westerberg, L.-G.:
Earth atmospheric loss through the plasma mantle and its dependence on solar wind parameters,
Earth Planet Space, 71, 70, https://doi.org/10.1186/s40623-019-1048-0, 2019.
Seki, K., Elphic, R. C., Hirahara, M., Terasawa, T., and Mukai, T.:
On atmospheric loss of oxygen ions from Earth through magnetospheric processes,
Science, 291, 1939–1941, https://doi.org/10.1126/science.1058913, 2001.
Seki, K., Hirahara, M., Hoshino, M., Terasawa, T., Elphic, R. C., Saitok, Y., Mukaik, T., Hayakawak, H., Kojima, H., and Matsumoto, H.:
Cold ions in the hot plasma sheet of Earth's magnetotail,
Nature, 422, 589–592, https://doi.org/10.1038/nature01502, 2003.
Sergeev, V. A., Malkov, M., and Mursula, K.: Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail,
J. Geophys. Res., 98, 7609–7620, https://doi.org/10.1029/92JA02587, 1993.
Shelley, E. G., Johnson, R. G., and Sharp, R. D.: Satellite observations of energetic heavy ions during a geomagnetic storm,
J. Geophys. Res., 77, 6104–6110, https://doi.org/10.1029/JA077i031p06104, 1972.
Sibeck, D. G., McEntire, R. W., Lui, A. T. Y., Lopez, R. E., Krimigis, S. M., Decker, R. B., Zanetti, L. J., and Potemra, T. A.:
Energetic magnetospheric ions at the dayside magnetopause: Leakage or merging?,
J. Geophys. Res., 92, 12097–12114, https://doi.org/10.1029/JA092iA11p12097, 1987.
Sibeck, D. G., Paschmann, G., Treumann, R. A., Fuselier, S. A., Lennartsson, W., Lockwood, M., Lundin, R., Ogilvie, K. W., Onsager, T. G., Phan, T.-D., Roth, M., Scholer, M., Sckopke, N., Stasiewicz, K., and Yamauchi, M.:
Plasma transfer processes at the magnetopause,
Space Sci. Rev., 88, 207–283, https://doi.org/10.1023/A:1005255801425, 1999.
Singh, N. and Horwitz, J. L.: Plasmasphere refilling: Recent observations and modeling, J. Geophys. Res., 97, 1049–1079, https://doi.org/10.1029/91JA02602, 1992.
Slapak, R. and Nilsson, H.: The oxygen ion circulation in the outer terrestrial magnetosphere and its dependence on geomagnetic activity, Geophys. Res. Lett., 45, 12669–12676,
https://doi.org/10.1029/2018GL079816, 2018.
Slapak, R., Nilsson, H., and Westerberg, L. G.: A statistical study on O+ flux in the dayside magnetosheath, Ann. Geophys., 31, 1005–1010, https://doi.org/10.5194/angeo-31-1005-2013, 2013.
Slapak, R., Schillings, A., Nilsson, H., Yamauchi, M., Westerberg, L.-G., and Dandouras, I.: Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: implications for atmospheric escape on evolutionary timescales, Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, 2017a.
Slapak, R., Hamrin, M., Pitkänen, T., Yamauchi, M., Nilsson, H., Karlsson, T., and Schillings, A.: Quantification of the total ion transport in the near-Earth plasma sheet, Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, 2017b.
Sonnerup, B. U.: Magnetopause reconnection rate, J. Geophys. Res., 79, 1546–1549, https://doi.org/10.1029/JA079i010p01546, 1974.
Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W., and Elphic, R. C.:
Factors controlling ionospheric outflows as observed at intermediate altitudes,
J. Geophys. Res., 110, A03221, https://doi.org/10.1029/2004JA010829, 2005.
Su, Y. J., Horwitz, J. L., Moore, T. E., Giles, B. L., Chandler, M. O., Craven, P. D., Hirahara, M., and Pollock, C. J.:
Polar wind survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument suite aboard POLAR,
J. Geophys. Res., 103, 29305–29337, https://doi.org/10.1029/98JA02662, 1998.
Tian, F., Kasting, J. F., Liu, H.-L., and Roble, R. G.: Hydrodynamic planetary thermosphere model: 1. Response of the Earth's thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling,
J. Geophys. Res., 113, E05008, https://doi.org/10.1029/2007JE002946, 2008.
Toledo-Redondo, S., André, M., Vaivads, A., Khotyaintsev, Y. V., Lavraud, B., Graham, D. B., Divin, A., and Aunai, N.:
Cold ion heating at the dayside magnetopause during magnetic reconnection, Geophys. Res. Lett., 43, 58–66, https://doi.org/10.1002/2015GL067187, 2016.
Vasyliunas, V. M.: Multiple-branch model of the open magnetopause,
Geophys. Res. Lett., 22, 1145–1147, https://doi.org/10.1029/95GL01068, 1995.
Vallat, C., Ganushkina, N., Dandouras, I., Escoubet, C. P., Taylor, M. G. G. T., Laakso, H., Masson, A., Sauvaud, J.-A., Rème, H., and Daly, P.: Ion multi-nose structures observed by Cluster in the inner Magnetosphere, Ann. Geophys., 25, 171–190, https://doi.org/10.5194/angeo-25-171-2007, 2007.
Waara, M., Slapak, R., Nilsson, H., Stenberg, G., André, M., and Barghouthi, I. A.: Statistical evidence for O+ energization and outflow caused by wave-particle interaction in the high altitude cusp and mantle, Ann. Geophys., 29, 945–954, https://doi.org/10.5194/angeo-29-945-2011, 2011.
Walker, R., Terasawa, T., Christon, S. P.,
Angelopoulos, V., Hoshino, M., Lennartsson, W., Maezawa, K., Sibeck, D. G., Treumann, R. A., Williams, D. J., and Zelenyi, L.:
Source and loss processes in the magnetotail,
Space Sci. Rev., 88, 285–353, https://doi.org/10.1023/A:1005207918263, 1999.
Waite, J. H., Gallagher, D. L., Chandler, M. O.,
Olsen, R. C., Comfort, R. H., Johnson, J. F. E., Chappell, C. R., Peterson, W. K., Weimer, D., and Shawhan, S. D.:
Plasma and field observations of a Pc5 wave event,
J. Geophys. Res., 91, 11147–11161, https://doi.org/10.1029/JA091iA10p11147, 1986.
Watanabe, S., Whalen, B. A., and Yau, A. W.: Thermal ion observations of depletion and refilling in the plasmaspheric trough,
J. Geophys. Res., 97, 1081–1096, https://doi.org/10.1029/91JA02818, 1992.
Welling, D. T., Jordanova, V. K., Zaharia, S. G., Glocer, A., and Toth, G.:
The effects of dynamic ionospheric outflow on the ring current,
J. Geophys. Res., 116, A00J19, https://doi.org/10.1029/2010JA015642, 2011.
Welling, D. T., André, M., Dandouras, I., Delcourt, D., Fazakerley, A., Fontaine, D., Foster, J., Ilie, R., Kistler, L., Lee, J. H., Liemohn, M. W., Slavin, J. A., Wang, C.-P., Wiltberger, M., and Yau, A.:
The Earth: plasma sources, losses, and transport processes,
Space. Sci. Rev., 192, 145, https://doi.org/10.1007/s11214-015-0187-2, 2015.
Winglee, R. M., Chua, D., Brittnacher, M., Parks, G. K., and Lu, G.: Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential,
J. Geophys. Res., 107, 1237, https://doi.org/10.1029/2001JA000214, 2002.
Winningham, D. J., Yasuhara, F., Akasofu, S.-I., and Heikkila, W. J.: The latitudinal morphology of 10 eV to 10 keV electron fluxes during quiet and disturbed times in the 2100–0300 MLT sector,
J. Geophys. Res., 80, 3148–3171, https://doi.org/10.1029/JA080i022p03148, 1975.
Woch, J. and Lundin, R.: The low-latitude boundary layer at mid-altitudes: Identification based on Viking hot plasma data,
Geophys. Res. Lett., 20, 979–982, https://doi.org/10.1029/93GL00849, 1993.
Wood, B. E.: The solar wind and the Sun in the past,
Space Sci. Rev., 126, 3–14, https://doi.org/10.1007/s11214-006-9006-0, 2006.
Yamauchi, M. and Lundin, R.: The wave-assisted cusp model: Comparison to low-altitude observations, Phys. Chem. Earth, 22, 729–734, https://doi.org/10.1016/S0079-1946(97)00203-6, 1997.
Yamauchi, M. and Lundin, R.: Sub-keV ring current ions as the tracer of substorm injection, Ann. Geophys., 24, 355–366, https://doi.org/10.5194/angeo-24-355-2006, 2006.
Yamauchi, M. and Slapak, R.: Cusp current system: an energy source view, in: Electric Currents in Geospace and Beyond, edited by: Keiling, A., Marghitu, O., and Wheatland, M., 339–358, American Geophysical Union, Washington, DC., https://doi.org/10.1002/9781119324522.ch20, 2018a.
Yamauchi, M. and Slapak, R.: Energy conversion through mass loading of escaping ionospheric ions for different Kp values, Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, 2018b.
Yamauchi, M. and Wahlund, J.-E.: Role of the ionosphere for the atmospheric evolution of planets,
Astrobiology J., 7, 783–800, https://doi.org/10.1089/ast.2007.0140, 2007.
Yamauchi, M., Lundin, R., Mursula, K., Marklund, G., and Potemra, T. A.:
Dayside Pc5 pulsation detected by Viking ion data at L=4,
Geophys. Res. Lett., 23, 2517–2520, https://doi.org/10.1029/96GL02140, 1996.
Yamauchi, M., Lundin, R., Eliasson, L., Winningham, D., Reme, H., Vallat, C., Dandouras, I., and Cluster-CIS team:
Structures of sub-keV ions inside the ring current region,
in: The Inner Magnetosphere: Physics and Modeling, edited by: Pulkkinen, T. I., Tsyganenko, N. A., and Friedel, R., 41–46, American Geophysical Union, Washington, DC., https://doi.org/10.1029/155GM05, 2005a.
Yamauchi, M., Eliasson, L., Lundin, R., and Norberg, O.: Unusual heavy ion injection events observed by Freja, Ann. Geophys., 23, 535–543, https://doi.org/10.5194/angeo-23-535-2005, 2005b.
Yamauchi, M., Brandt, P. C., Ebihara, Y., Dandouras, I., Nilsson, H., Lundin, R., Rème, H., Vallat, C., Lindquvist, P.-A., Balogh, A., and Daly, P. W.:
Source location of the wedge-like dispersed ring current in the morning sector during a substorm,
J. Geophys. Res., 111, A11S09, https://doi.org/10.1029/2006JA011621, 2006a.
Yamauchi, M., Iyemori, Y., Frey, H., and Henderson, M.: Unusually quick development of a 4000 nT substorm during the initial 10 min of the 29 October 2003 magnetic storm,
J. Geophys. Res., 111, A04217, https://doi.org/10.1029/2005JA011285, 2006b.
Yamauchi, M., Ebihara, Y., Dandouras, I., and Rème, H.: Dual source populations of substorm-associated ring current ions, Ann. Geophys., 27, 1431–1438, https://doi.org/10.5194/angeo-27-1431-2009, 2009a.
Yamauchi, M., Dandouras, I., Daly, P. W., Stenberg, G., Frey, H. U., Lindqvist, P.-A., Ebihara, Y., Nilsson, H., Lundin, R., Rème, H., André, M., Kronberg, E. A., Balogh, A., and Henderson, M.: Magnetospheric solitary structure maintained by 3000 km/s ions as a cause of westward moving auroral bulge at 19 MLT, Ann. Geophys., 27, 2947–2969, https://doi.org/10.5194/angeo-27-2947-2009, 2009b.
Yamauchi, M., Dandouras, I., Rème, H., and El-Lemdani Mazouz, F.: Equatorially confined warm trapped ions at around 100 eV near the plasmapause,
Geophys. Res. Lett., 39, L15101, https://doi.org/10.1029/2012GL052366, 2012.
Yamauchi, M., Dandouras, I., Rème, H., Lundin, R., and Kistler, L. M.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, 2013.
Yamauchi, M., Dandouras, I., Rème, H., and Nilsson, H.: Cluster observations of hot He+ events in the inner magnetosphere,
J. Geophys. Res., 119, 2706–2716, https://doi.org/10.1002/2013JA019724, 2014a.
Yamauchi, M., Ebihara, Y., Nilsson, H., and Dandouras, I.: Ion drift simulation of sudden appearance of sub-keV structured ions in the inner magnetosphere, Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, 2014b.
Yamauchi, M., Hara, T., Lundin, R., Dubinin, E., Fedorov, A., Sauvaud, J.-A., Frahm, R. A., Ramstad, R., Futaana, Y., Holmström, M., and Barabash, S.:
Seasonal variation of Martian pick-up ions: evidence of breathing exosphere,
Planet. Space Sci., 119, 54–61, https://doi.org/10.1016/j.pss.2015.09.013, 2015.
Yamauchi, M., Sergienko, T., Enell, C.-F., Schillings, A., Slapak, R., Johnsen, M. G., Tjulin, A., and Nilsson, H.:
Ionospheric response observed by EISCAT during the September 6–8, 2017, space weather event: overview,
Space Weather, 16, 1437–1450, https://doi.org/10.1029/2018SW001937, 2018.
Yau, A. W. and Whalen, B. A.: Auroral ion composition during large magnetic storms,
Can. J. Phys., 70, 500–509, https://doi.org/10.1139/p92-085, 1992.
Yau, A. W., Abe, T., and Peterson, W. K.: The polar wind: Recent observations,
J. Atmos. Sol.-Terr. Phy., 69, 1936–1983, https://doi.org/10.1016/j.jastp.2007.08.010, 2007.
Zong, Q.-G., Zhou, X.-Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A.:
Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt,
J. Geophys. Res., 114, A10204, https://doi.org/10.1029/2009JA014393, 2009.
Zoennchen, J. H., Nass, U., and Fahr, H. J.: Terrestrial exospheric hydrogen density distributions under solar minimum and solar maximum conditions observed by the TWINS stereo mission, Ann. Geophys., 33, 413–426, https://doi.org/10.5194/angeo-33-413-2015, 2015.
Zoennchen, J. H., Nass, U., Fahr, H. J., and Goldstein, J.: The response of the H geocorona between 3 and 8 Re to geomagnetic disturbances studied using TWINS stereo Lyman-α data, Ann. Geophys., 35, 171–179, https://doi.org/10.5194/angeo-35-171-2017, 2017.
Short summary
Terrestrial ion transport and total escape are synthesized, with stress on the high-latitude polar region and the inner magnetosphere where Custer significantly improved knowledge. After estimating the outflow flux and destinations, complicated ion dynamics in the inner magnetosphere was classified and summarized, through which more than half the O+ is finally lost to space. Together with direct escapes, total O+ escape is high enough to influence the evolution of the biosphere.
Terrestrial ion transport and total escape are synthesized, with stress on the high-latitude...