Articles | Volume 37, issue 6
https://doi.org/10.5194/angeo-37-1095-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-1095-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparing high-latitude thermospheric winds from Fabry–Perot interferometer (FPI) and challenging mini-satellite payload (CHAMP) accelerometer measurements
Anasuya Aruliah
CORRESPONDING AUTHOR
Atmospheric Physics Laboratory, University College London, Gower
Street, London, WC1E 6BT, UK
Matthias Förster
CORRESPONDING AUTHOR
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences,
Telegrafenberg, 14473 Potsdam, Germany
Max Planck Institute for Solar System Research (MPS),
Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
Rosie Hood
Atmospheric Physics Laboratory, University College London, Gower
Street, London, WC1E 6BT, UK
Ian McWhirter
Atmospheric Physics Laboratory, University College London, Gower
Street, London, WC1E 6BT, UK
Faculty of Aerospace Engineering, Delft University of
Technology (TU Delft), Kluyverweg 1, 2629 HS Delft, the Netherlands
currently at: Royal Netherlands Meteorological Institute
(KNMI), Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Related authors
No articles found.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Liudmila I. Gromova, Matthias Förster, Yakov I. Feldstein, and Patricia Ritter
Ann. Geophys., 36, 1361–1391, https://doi.org/10.5194/angeo-36-1361-2018, https://doi.org/10.5194/angeo-36-1361-2018, 2018
Short summary
Short summary
Hall current variations in different time sectors during six magnetic storms of the summer seasons in 2003 and 2005 are examined. The sequence of the phenomena, their structure, positions and the strength of the polar and the auroral Hall electrojets were investigated using scalar magnetic field measurements obtained from the CHAMP satellite. We analyzed the correlations and the regression relations of the electrojets with auroral and ring current activity, the IMF, and solar wind parameters.
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
B. J. Jackel, C. Unick, M. T. Syrjäsuo, N. Partamies, J. A. Wild, E. E. Woodfield, I. McWhirter, E. Kendall, and E. Spanswick
Geosci. Instrum. Method. Data Syst., 3, 71–94, https://doi.org/10.5194/gi-3-71-2014, https://doi.org/10.5194/gi-3-71-2014, 2014
Y. I. Feldstein, V. G. Vorobjev, V. L. Zverev, and M. Förster
Hist. Geo Space. Sci., 5, 81–134, https://doi.org/10.5194/hgss-5-81-2014, https://doi.org/10.5194/hgss-5-81-2014, 2014
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Cited articles
Anderson, C., Conde, M., and McHarg, M. G.: Neutral thermospheric dynamics
observed with two scanning Doppler imagers: 1. Monostatic and bistatic
winds, J. Geophys. Res., 117, A03304, https://doi.org/10.1029/2011JA017041, 2012.
Aruliah, A. L. and Griffin, E.: Evidence of meso-scale structure in the high-latitude thermosphere, Ann. Geophys., 19, 37–46, https://doi.org/10.5194/angeo-19-37-2001, 2001.
Aruliah, A. L. and Rees, D.: The Trouble with Thermospheric Vertical Winds:
Geomagnetic, Seasonal and Solar Cycle Dependence at High Latitudes, J.
Atmos.-Terr. Phys., 57, 597–609, 1995.
Aruliah A. L., Farmer, A. D., Rees, D., and Brändström, U.: The Seasonal
Behaviour of High-Latitude Thermospheric Winds and Ion Velocities Observed
Over One Solar Cycle, J. Geophys. Res., 101, 15701–15711, 1996.
Aruliah, A. L., Griffin, E. M., Aylward, A. D., Ford, E. A. K., Kosch, M. J., Davis, C. J., Howells, V. S. C., Pryse, S. E., Middleton, H. R., and Jussila, J.: First direct evidence of meso-scale variability on ion-neutral dynamics using co-located tristatic FPIs and EISCAT radar in Northern Scandinavia, Ann. Geophys., 23, 147–162, https://doi.org/10.5194/angeo-23-147-2005, 2005.
Bauer, S. J.: Physics and chemistry in space, Vol. 6, Physics of planetary
ionospheres, Springer-Verlag, 17 pp., 1973.
Bruinsma, S. L., Doornbos, E., and Bowman, B. R.: Validation of GOCE densities
and evaluation of thermosphere models, Adv. Space Res., 54,
576–585, https://doi.org/10.1016/j.asr.2014.04.008, 2014.
Cook, G. E.: Satellite drag coefficients, Planet. Space Sci., 13, 929–945, 1965.
Cousins, E. D. P. and Shepherd, S. G.: A dynamical model of
high-latitude convection derived from SuperDARN plasma drift measurements,
J. Geophys. Res., 115, A12329, https://doi.org/10.1029/2010JA016017, 2010.
Dalgarno, A. and Smith, F. J.: The thermal conductivity and viscosity of
atomic oxygen, Planet. Spac. Sci., 9, 1–2, 1962.
Davies, J. A., Lester, M., Milan, S. E., and Yeoman, T. K.: A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system, Ann. Geophys., 17, 892–902, https://doi.org/10.1007/s00585-999-0892-9, 1999.
Deehr, C. S., Sivjee, G. G., Egeland, A., Henriksen, K., Sandholt, P. E.,
Smith, R., Sweeney, P., Duncan, C., and Gilmer, J.: Ground-based observations of
F region aurora associated with the magnetospheric cusp, J. Geophys. Res.,
85, 2185–2192, https://doi.org/10.1029/JA085iA05p02185, 1980.
Dhadly, M., Emmert, J., Drob, D., Conde, M., Doornbos, E., Shepherd, G.,
Makela, J., Wu, Q., Niciejewski, R., and Ridley, A.: Seasonal dependence of
northern high-latitude upper thermospheric winds: A quiet time
climatological study based on ground-based and space-based measurements,
J. Geophys. Res.-Space, 122, 2619–2644,
https://doi.org/10.1002/2016JA023688, 2017.
Dhadly, M., Emmert, J., Drob, D., Conde, M., Shepherd, G., Makela, J., Wu,
Q., Niciejewski, R., and Ridley, A.: Seasonal Dependence of geomagnetic
active-time northern high-latitude upper thermospheric winds, J. Geophys.
Res., 123, 739–754, https://doi.org/10.1002/2017JA024715, 2018.
Doornbos, E, Ijssel, J., Lühr, H., Förster, M., and Koppenwallner,
G:. Neutral density and crosswind determination from arbitrarily oriented
multiaxis accelerometers on satellites, J. Spacecraft Rockets,
47, 580–589, https://doi.org/10.2514/1.48114, 2010.
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E,
Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J.
D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The
quiet time thermosphere, Earth Space Sci., 2, 301–319,
10.1002/2014EA000089, 2015.
Emmert, J.T., Hernandez, G., Jarvis, M. J., Niciejewski, R. J., Sipler, D.
P., and Vennerstrom, S.: Climatologies of nighttime upper thermospheric
winds measured by ground-based Fabry-Perot interferometers during
geomagnetically quiet conditions: 2. High-latitude circulation and
interplanetary magnetic field dependence, J. Geophys. Res., 111, A12303,
https://doi.org/10.1029/2006JA011949, 2006b.
Fiori, R. A. D., Koustov, A. V., Boteler, D. H., Knudsen, D. J., and
Burchill, J. K.: Calibration and assessment of Swarm ion drift measurements
using a comparison with a statistical convection model, Earth Planet.
Space, 68, 100, https://doi.org/10.1186/s40623-016-0472-7, 2016.
Forbes, J. M., Roble, R. G., and Marcos, F. A.: Magnetic activity dependence
of high–latitude thermospheric winds and densities below 200 km, J.
Geophys. Res., 98, 13693–13702, 1993.
Ford, E. A. K., Aruliah, A. L., Griffin, E. M., and McWhirter, I.: High time resolution measurements of the thermosphere from Fabry-Perot Interferometer measurements of atomic oxygen, Ann. Geophys., 25, 1269–1278, https://doi.org/10.5194/angeo-25-1269-2007, 2007.
Förster, M. and Cnossen, I.: Upper atmosphere differences between
northern and southern high latitudes: The role of magnetic field asymmetry,
J. Geophys. Res.-Space, 118, 5951–5966,
2013.
Förster, M. and Doornbos, E.: Upper thermosphere neutral
wind cross-track component deduced from CHAMP accelerometer data, GFZ German
Research Centre for Geosciences, https://doi.org/10.5880/GFZ.1.1.2019.001, 2019.
Förster, M., Rentz, S., Köhler, W., Liu, H., and Haaland, S. E.: IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements, Ann. Geophys., 26, 1581–1595, https://doi.org/10.5194/angeo-26-1581-2008, 2008.
Förster, M., Haaland, S. E., and Doornbos, E.: Thermospheric vorticity at high geomagnetic latitudes from CHAMP data and its IMF dependence, Ann. Geophys., 29, 181–186, https://doi.org/10.5194/angeo-29-181-2011, 2011.
Förster, M., Doornbos, E., and Haaland S.: The role of the upper
atmosphere for dawn-dusk differences in the coupled
magnetosphere-ionosphere-thermosphere system, in: Dawn-Dusk Asymmetries in
Planetary Plasma Environments, edited by: Haaland, S., Runov, A., and
Forsyth, C., John Wiley Publications, AGU Geophysical Monograph, Vol. 230,
125–142, ISBN: 978-1-119-21632-2, 2017.
Foster, J. C., Holt, J. M., Musgrove, R. G., and Evans, D. S.: Ionospheric
convection associated with discrete levels of particle precipitation,
Geophys. Res. Lett., 13, 656–659, 1986.
Fuller-Rowell, T. J.: Modelling the solar cycle change in nitric oxide in
the thermosphere and upper mesosphere, J. Geophys. Res., 98, 1559–1570, 1992.
Fuller-Rowell, T. J. and Evans, D. S.: Height Integrated Pedersen and Hall
Conductivity Patterns Inferred from the TIROS-NOAA Satellite Data, J.
Geophys. Res., 92, 7606–7618, 1987.
Fuller-Rowell, T. J. and Rees, D.: Interpretation of an Anticipated Long-Lived
Vortex in the Lower Thermosphere Following Simulation of an Isolated
Substorm, Planet. Space Sci., 32, 69–85, 1984.
Fuller-Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., and Bailey, G. J.:
Simulations of the seasonal and UT variations of the thermosphere and
ionosphere using a coupled, three-dimensional, global model, Pur. A. Geophys.,
127, 189–217, 1988.
Fuller-Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V.,
and Millward, G. H.: A coupled thermosphere ionosphere model, Solar
terrestrial energy program (STEP), handbook of ionospheric models, edited by:
Schunk, R. W., 217–238, 1996.
Gillies, M. D., Knudsen, D., Donovan, E., Jackel, B., Gillies, R.,
Spanswick, E.: Identifying the 630 nm auroral arc emission height: A
comparison of the triangulation, FAC profile, and electron density methods,
J. Geophys. Res.-Space, 122, 8181–8197, https://doi.org/10.1002/2016JA023758, 2017.
Griffin, E. M., Aruliah, A., Müller-Wodarg, I. C. F., and Aylward, A.: Comparison of high-latitude thermospheric meridionalwinds II: combined FPI, radar and model Climatologies, Ann. Geophys., 22, 863–876, https://doi.org/10.5194/angeo-22-863-2004, 2004.
Griffin, E. M., Aruliah, A. L., McWhirter, I., Yiu, H.-C. I., Charalambous, A., and McCrea, I.: Upper thermospheric neutral wind and temperature measurements from an extended spatial field, Ann. Geophys., 26, 2649–2655, https://doi.org/10.5194/angeo-26-2649-2008, 2008.
Harang, L.: The mean field of disturbance of polar geomagnetic storms, Terr.
Mag. Atmos. Elec., 51, 353–380, 1946.
Harris, M.: A New Coupled Middle Atmosphere and Thermosphere General
Circulation Model: Studies of Dynamic, Energetic and Photochemical Coupling
in the Middle and Upper Atmosphere, PhD Thesis, University of London, 2001
Harris, M. J., Arnold, N. F., and Aylward, A. D.: A study into the effect of
the diurnal tide on the structure of the background mesosphere and
thermosphere using the new coupled middle atmosphere and thermosphere (CMAT)
general circulation model, Ann. Geophys., 20, 225–235,
https://doi.org/10.5194/angeo-20-225-2002, 2002.
Hecht, E. and Zajac, A.: Optics, Addison-Wesley Publishing Company, p. 17, 1980.
Hedin, A. E., Salah, J. E., Evans, J. V., Reber, C. A., Newton, G. P.,
Spencer, N. W., Kayser, D. C., Alcayde, D., Bauer, P., Cogger, L., and McClure,
J. P.: A Global Thermospheric Model Based on Mass Spectrometer and
Incoherent Scatter Data MSIS 1, N2 Density and Temperature,
J. Geophys. Res., 82, 2139–2147, 1977.
Hedin, A. E., Biondi, M. A., Burnside, R. G., Hernandez, G., Johnson, R. M.,
Killeen, T. L., Mazaudier, C., Meriwether, J. W., Salah, J. E., Sica, R. J.,
Smith, R. W., Spencer, N. W., Wickwar, V. B., and Virdi, T. S.: Revised Global
Model of Thermospheric Winds Using Satellite and Ground-Based Observations,
J. Geophys. Res.-Space, 96, 7657–7688, 1991.
Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Frase, G. J.,
Tsuda, T., Vial, F., and Vincent, R. A.: Empirical wind model for the upper, middle and
lower atmosphere, J. Atmos.-Terr. Phys., 58, 1421–1447,
https://doi.org/10.1016/0021-9169(95)00122-0, 1996.
Helleputte, T. V., Doornbos, E., and Visser, P.: CHAMP and GRACE
accelerometer calibration by GPS-based orbit determination, Adv.
Space Res., 43, 1890–1896.
https://doi.org/10.1016/j.asr.2009.02.017, 2009.
Hood, R. K. E.: Effects of field-aligned currents in the
ionosphere-thermosphere system, PhD Thesis, University College London, UK,
2018
Jacchia, L. G. and Slowey, J. W.: A supplemental catalog of atmospheric
densities from satellite-drag analysis (No. 348), SAO Special Report, 324 pp., 1972.
Killeen, T. L., Smith, R. W., Hays, P. B., Spencer, N. W., Wharton, L. E.,
and McCormac, F. G.: Neutral winds in the high latitude winter F-region:
Coordinated observations from ground and space, Geophys. Res. Lett., 11,
311–314, 1984.
Killeen, T. L., Won, Y.-I., Niciejewski, R. J., and Burns, A. G.: Upper Thermosphere
Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle,
Geomagnetic Activity and IMF Dependencies, J. Geophys. Res., 100,
21327–21342, 1995.
Koustov, A. V., Lavoie, D. B., Kouznetsov, A. F., Burchill, J. K.,Knudsen,
D. J., and Fiori, R. A. D.: A comparison of cross-track ion drift measured
by the Swarm satellites and plasma convection velocity measured by
SuperDARN, J. Geophys. Res.-Space, 124, 4710–4724,
https://doi.org/10.1029/2018JA026245, 2019.
Liu, H., Lühr, H., Henize, V., and Köhler, W.: Global distribution
of the thermospheric total mass density derived from CHAMP, J. Geophys.
Res., 110, A04301, https://doi.org/10.1029/2004JA010741, 2005.
Liu, H., Lühr, H.,Watanabe, S., Köhler,W., Henize, V., and Visser,
P.: Zonal winds in the equatorial upper thermosphere: Decomposing the solar
flux, geomagnetic activity, and seasonal dependencies, J. Geophys. Res.,
111, A07307, https://doi.org/10.1029/2005JA011415, 2006.
Liu, H., Doornbos, E., and Nakashima, J.: Thermospheric wind observed by
GOCE: Wind jets and seasonal variations, J. Geophys. Res.-Space, 121, 6901–6913, https://doi.org/10.1002/2016JA022938,
2016.
Liu, X., Xu, J., Yue, J., and Vadas, S. L.: Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere, Ann. Geophys., 31, 1–14, https://doi.org/10.5194/angeo-31-1-2013, 2013.
Makela, J. J., Meriwether, J. W., Huang, Y., and Sherwood, P. J.: Simulation and
analysis of a multi-order imaging Fabry-Perot interferometer for the study
of thermospheric winds and temperatures, Appl. Opt., 50, 4403–4416,
2011.
March, G., Doornbos, E. N., and Visser, P. N. A. M.: High-fidelity geometry
models for improving the consistency of CHAMP, GRACE, GOCE and Swarm
thermospheric density data sets, Adv. Space Res., 63, 213–238,
https://doi.org/10.1016/j.asr.2018.07.009, 2018.
March, G., Doornbos, E. N., and Visser, P. N. A. M.: High-fidelity geometry
models for improving the consistency of CHAMP, GRACE, GOCE and Swarm
thermospheric density data sets, Adv. Space Res., 63, 213–238,
https://doi.org/10.1016/j.asr.2018.07.009, 2019.
Marcos, F. A. and Forbes, J. M.: Thermospheric wind from the satellite
electrostatic triaxial accelerometer system, J. Geophys. Res., 90,
6543–6552, 1985.
McWhirter, I.: Electron Multiplying CCDs – New Technology for Low Light
Level Imaging, Proceedings of 33rd Annual European Meeting on Atmospheric
Studies by Optical Methods, IRF Sci. Rep., 292, 61–66, 2008.
McWhirter, I., Rees, D., and Greenaway, A. H.: Miniature Imaging Photon Detectors
III. – An Assessment of the Performance of the Resistive Anode
IPD, J. Phys. E., 15, 145–150, 1982.
Mehta, P. M., Walker, A. C., Sutton, E., and Godinez, H. C.: New density
estimates derived using accelerometers on-board the CHAMP and GRACE
satellites, Space Weather, 15, 558–576,
https://doi.org/10.1002/2016SW001562, 2017.
Moe, M., Wallace, M., Steven, D., and Moe, K.: The upper mesosphere
and lower thermosphere, A review of experiment and theory, Geophys.
Monogr., 87, 349–356, 1995
Quegan, S., Bailey, G. J., Moffett, R. J., Heelis, R. A., Fuller-Rowell, T.
J., Rees, D., and Spiro, A. W.: A theoretical study of the distribution of
ionisation in the high-latitude ionosphere and the plasmasphere: First
results of the mid-latitude trough and the light ion trough, J. Atm.-Terr.
Phys., 44, 619–640, 1982.
Rees, D., Fuller-Rowell, T. J., Gordon, R., Smith, M. F., Maynard, N. C.,
Heppner, J. P., Spencer, N. W., Wharton, L., Hays, P. B., and Killeen, T.
L.: A theoretical and empirical study of the response of the high latitude
thermosphere to the sense of the “Y” component of the interplanetary
magnetic field, Planet. Space Sci., 34, 1–40, 1986.
Rees, M. H.:
Physics and chemistry of the upper atmosphere, Cambridge atmospheric and space science series, Cambridge
University Press, ISBN 0-521-32305-3, 1989.
Reigber, C., Lühr, H., and Schwintzer, P.: CHAMP mission status, Adv.
Space Res., 30, 129–134, 2002.
Roble, R. G., Ridley E. C., and Dickenson, R. E.: On the global mean
structure of the thermosphere, J. Geophys. Res., 92, 8745–8758, 1987.
Ronksley, A.: Optical remote sensing of mesoscale thermospheric dynamics
above Svalbard and Kiruna, PhD thesis, UCL, London, UK, 2016.
Salah, J. E. and Holt, J. M.: Midlatitude thermospheric winds from
incoherent scatter radar and theory, Radio Sci., 9, 301–313, 1974.
Schlegel, K., Lühr, H., St.-Maurice, J.-P., Crowley, G., and Hackert, C.: Thermospheric density structures over the polar regions observed with CHAMP, Ann. Geophys., 23, 1659–1672, https://doi.org/10.5194/angeo-23-1659-2005, 2005.
Shepherd, S. G.: Altitude-adjusted corrected geomagnetic coordinates:
Definition and functional approximations, J. Geophys. Res.-Space,
119, 7501–7521, https://doi.org/10.1002/2014JA020264, 2014.
Sica, R. J., Rees, M. H., Roble, R. G., Hernandez, G., and Romick, G. J.: The
Altitude Region Sampled by Ground-Based Doppler Temperature Measurements of
the OI 15867K Emission Line in Aurorae, Planet. Space Sci., 34, 483–488,
1986.
Song, P. and Vasyliūnas, V. M.: Inductive-dynamic coupling of the
ionosphere with the thermosphere and the magnetosphere, in: 'Modeling the
Ionosphere-Thermosphere System', edited by: Huba, J., Schunk, R., and
Khazanov, G., American Geophysical Union, Washington DC,
Geoph. Monog. Series, 201, 201–215, 2013.
Song, P., Vasyliūnas, V. M., and Zhou, X.-Z.:
Magnetosphere-ionosphere/thermosphere coupling: Self-consistent solutions
for a one-dimensional stratified ionosphere in three-fluid theory, J.
Geophys. Res., 114, A08213, https://doi.org/10.1029/2008JA013629, 2009.
Storz, M. F., Bowman, B. R., Branson, M. J. I., et al.: 2005. High
accuracy satellite drag model (HASDM), Adv. Space Res., 36, 2497–2505,
https://doi.org/10.1016/j.asr.2004.02.020, 2005.
Sutton, E. K., Nerem, R. S., and Forbes, J. M.: Density and Winds in the
Thermosphere Deduced from Accelerometer Data, J. Spacecraft
Rockets, 44, 1210–1219, https://doi.org/10.2514/1.28641, 2007.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity
recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Torr, M. R., Richards, P. G., and Torr, D. G.: A new determination of
ultraviolet heating ef?ciency in the thermosphere, J. Geophys.Res., 85,
6819–6826, 1980a.
Torr, M. R., Richards, P. G., and Torr, D. G.: The solar ultraviolet heating
efficiency in the mid-latitude thermosphere, Geophys. Res. Lett., 6, 673–376,
1980b.
Vadas, S. L. and Crowley, G.: Neutral wind and density perturbations in the
thermosphere created by gravity waves observed by the TIDDBIT sounder, J.
Geophys. Res.-Space, 122, 6652–6678, https://doi.org/10.1002/2016JA023828, 2017.
Visser, T., March, G., Doornbos, E., de Visser, C., and Visser, P.:
Horizontal and vertical thermospheric cross-wind from GOCE linear and
angular accelerations, Adv. Space Res., 63, 3139–3153,
https://doi.org/10.1016/j.asr.2019.01.030, 2019.
Vlasov, M. N., Nicolls, M. J., Kelley, M. C., Smith, S. M., Aponte, N., and
Gonzalez, S. A: Modeling of airglow and ionospheric parameters at Arecibo
during quiet and disturbed periods in October 2002, J. Geophys. Res., 110,
A07303, https://doi.org/10.1029/2005JA011074, 2005.
Yiu, H. C. I: High latitude thermosphere meso-scale studies and long-term
database investigations with the new Scanning Doppler Imager and Fabry-Perot
Interferometers, Ph.D. Thesis, Univ. of London, London, UK, 2014.
Short summary
Winds near the top of the atmosphere are expected to be the same at all heights for a given location by assuming high viscosity in rarefied gases. However, wind measurements from satellite drag at 350–400 km altitude were found to be up to 2 times larger than optical measurements at ∼240 km. Satellites provide global measurements, and ground-based FPIs provide long-term monitoring at single sites. So we must understand this inconsistency to model and predict atmospheric behaviour correctly.
Winds near the top of the atmosphere are expected to be the same at all heights for a given...