Articles | Volume 36, issue 1
Ann. Geophys., 36, 59–69, 2018
https://doi.org/10.5194/angeo-36-59-2018
Ann. Geophys., 36, 59–69, 2018
https://doi.org/10.5194/angeo-36-59-2018
Regular paper
18 Jan 2018
Regular paper | 18 Jan 2018

Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

Derek McKay et al.

Related authors

Response time correction of slow-response sensor data by deconvolution of the growth-law equation
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022,https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022,https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
A technique for volumetric incoherent scatter radar analysis
Johann Stamm, Juha Vierinen, Björn Gustavsson, and Andres Spicher
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-11,https://doi.org/10.5194/angeo-2022-11, 2022
Preprint under review for ANGEO
Short summary
On the determination of ionospheric electron density profiles using multi-frequency riometry
Derek McKay, Juha Vierinen, Antti Kero, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 11, 25–35, https://doi.org/10.5194/gi-11-25-2022,https://doi.org/10.5194/gi-11-25-2022, 2022
Short summary
Observing electric field and neutral wind with EISCAT 3D
Johann Stamm, Juha Vierinen, and Björn Gustavsson
Ann. Geophys., 39, 961–974, https://doi.org/10.5194/angeo-39-961-2021,https://doi.org/10.5194/angeo-39-961-2021, 2021
Short summary
Download
Short summary
This study used the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Finnish Meteorological Institute's all-sky camera. It looked at radio absorption and optical emission of the long east–west band of aurora (known as the growth phase arc), which forms at the start of substorms. The study found that radio absorption was consistently south of the bright auroral arc and that optical pulsating aurora occurs in the boundary region between the radio absorption zone and the bright arc.