Articles | Volume 34, issue 1
https://doi.org/10.5194/angeo-34-117-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-34-117-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The formation of multiple layers of ice particles in the polar summer mesopause region
H. Li
CORRESPONDING AUTHOR
Department of physics, Harbin Institute of Technology, Harbin, China
China Research Institute of Radio wave Propagation (CRIRP), Beijing,
China
J. Wu
China Research Institute of Radio wave Propagation (CRIRP), Beijing,
China
Z. Zhou
Department of physics, Harbin Institute of Technology, Harbin, China
Related authors
Yong Li, Hui Li, Jian Wu, Xingbao Lv, Chengxun Yuan, Ce Li, and Zhongxiang Zhou
Ann. Geophys., 41, 541–549, https://doi.org/10.5194/angeo-41-541-2023, https://doi.org/10.5194/angeo-41-541-2023, 2023
Short summary
Short summary
According to plasma drift theory, charged particles will drift when they are subjected to external forces, thus generating a drift current. In this paper, we establish the drift current and magnetic perturbation model in the ionosphere. Based on the HAARP ionospheric background, we analyze the properties of drift current and magnetic perturbation. This work provides guidance for a better understanding of ionospheric current distributions and magnetic perturbations.
Ruihuan Tian, Jian Wu, Jinxiu Ma, Yonggan Liang, Hui Li, Chengxun Yuan, Yongyuan Jiang, and Zhongxiang Zhou
Ann. Geophys., 37, 1079–1094, https://doi.org/10.5194/angeo-37-1079-2019, https://doi.org/10.5194/angeo-37-1079-2019, 2019
Short summary
Short summary
The density distribution of ice particles and electrons near the boundary of the polar mesosphere summer echo (PMSE) region is studied. The results show that when the radius distribution function of the condensation nucleus is a Gaussian type, for a certain range of the condensation core radius, sharp peaks with a meter scale appear in the density profiles of ice particles and electrons. These small-scale structures of electron density may be one of the causes of the PMSE phenomenon.
Yong Li, Hui Li, Jian Wu, Xingbao Lv, Chengxun Yuan, Ce Li, and Zhongxiang Zhou
Ann. Geophys., 41, 541–549, https://doi.org/10.5194/angeo-41-541-2023, https://doi.org/10.5194/angeo-41-541-2023, 2023
Short summary
Short summary
According to plasma drift theory, charged particles will drift when they are subjected to external forces, thus generating a drift current. In this paper, we establish the drift current and magnetic perturbation model in the ionosphere. Based on the HAARP ionospheric background, we analyze the properties of drift current and magnetic perturbation. This work provides guidance for a better understanding of ionospheric current distributions and magnetic perturbations.
Ruihuan Tian, Jian Wu, Jinxiu Ma, Yonggan Liang, Hui Li, Chengxun Yuan, Yongyuan Jiang, and Zhongxiang Zhou
Ann. Geophys., 37, 1079–1094, https://doi.org/10.5194/angeo-37-1079-2019, https://doi.org/10.5194/angeo-37-1079-2019, 2019
Short summary
Short summary
The density distribution of ice particles and electrons near the boundary of the polar mesosphere summer echo (PMSE) region is studied. The results show that when the radius distribution function of the condensation nucleus is a Gaussian type, for a certain range of the condensation core radius, sharp peaks with a meter scale appear in the density profiles of ice particles and electrons. These small-scale structures of electron density may be one of the causes of the PMSE phenomenon.
T. Xu, Y. L. Hu, F. F. Wang, Z. Chen, and J. Wu
Ann. Geophys., 33, 687–695, https://doi.org/10.5194/angeo-33-687-2015, https://doi.org/10.5194/angeo-33-687-2015, 2015
H. Zhang, Y. Liu, J. Wu, T. Xu, and D. Sheng
Ann. Geophys., 33, 93–100, https://doi.org/10.5194/angeo-33-93-2015, https://doi.org/10.5194/angeo-33-93-2015, 2015
Short summary
Short summary
Variations of UHF-band scintillation occurrence with latitude, time and season over the low-latitude region of China are presented. The ratio of the mean foF2 at 20:00LT between two equinoxes, which could act as a proxy of the equinoctial asymmetry in the occurrences of scintillation, is proportional to the ratio between the maximum scintillation occurrence in the autumn equinox and in the vernal equinox. The empirical climatological model of scintillation occurrence probability was validated.