Articles | Volume 33, issue 11
https://doi.org/10.5194/angeo-33-1369-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/angeo-33-1369-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Defining and resolving current systems in geospace
N. Y. Ganushkina
CORRESPONDING AUTHOR
Earth Observations Department, Finnish Meteorological Institute, Helsinki, Finland
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
M. W. Liemohn
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
S. Dubyagin
Earth Observations Department, Finnish Meteorological Institute, Helsinki, Finland
I. A. Daglis
Department of Physics, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
I. Dandouras
Astrophysics and Planetary Science Research Institute, CNRS/University of Toulouse, Toulouse, France
D. L. De Zeeuw
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
Y. Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
R. Ilie
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
R. Katus
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
M. Kubyshkina
Institute of Physics, University of St. Petersburg, St. Petersburg, Russia
S. E. Milan
Department of Physics and Astronomy, University of Leicester, Leicester, UK
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
S. Ohtani
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
N. Ostgaard
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
J. P. Reistad
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
P. Tenfjord
Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
F. Toffoletto
Physics and Astronomy Department, Rice University, Houston, Texas, USA
S. Zaharia
ISR-1 Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
O. Amariutei
Earth Observations Department, Finnish Meteorological Institute, Helsinki, Finland
Related authors
V. A. Sergeev, I. A. Chernyaev, V. Angelopoulos, and N. Y. Ganushkina
Ann. Geophys., 33, 1485–1493, https://doi.org/10.5194/angeo-33-1485-2015, https://doi.org/10.5194/angeo-33-1485-2015, 2015
Short summary
Short summary
Adaptive magnetospheric models based on THEMIS magnetic observations made at 6-9Re in the nightside magnetosphere are used to map the magnetically conjugate 30 and 80keV proton isotropy boundaries (IBs) to investigate the value of Kib=Rc/rc (magnetic curvature radius to particle gyroradius) in the neutral sheet at the IB generation place. For the most accurate mapping, the group Kib spread spans from 4 to 32; its median value is ~13, slightly larger than Kib8 expected for current sheet scatter.
This article is included in the Encyclopedia of Geosciences
V. A. Sergeev, S. A. Chernyaeva, S. V. Apatenkov, N. Y. Ganushkina, and S. V. Dubyagin
Ann. Geophys., 33, 1059–1070, https://doi.org/10.5194/angeo-33-1059-2015, https://doi.org/10.5194/angeo-33-1059-2015, 2015
Short summary
Short summary
We investigate the precipitated-to-trapped flux ratio patterns near the proton isotropy boundary (IB) using NOAA-POES observations. For 30 and 80keV proton energies, we found only 31% of events showing the dispersion pattern predicted by the non-adiabatic scattering in the tail current sheet. Most frequent pattern had no measureable IB energy dispersion (63%); structured IBs with a few Jprec/Jtrap dropouts were also usual (60%). Roles of current sheet and wave-induced scattering are discussed.
This article is included in the Encyclopedia of Geosciences
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024, https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
Short summary
Sudden local ozone (O3) enhancements have been reported in different regions of the world since the 1970s. While the hot channel of lightning strokes directly produce significant amounts of nitrogen oxide, no direct emission of O3 is expected. Corona discharges in convective active regions could explain local O3 increases, which remains unexplained. We present the first mathematical functions that relate the global annual frequency of in-cloud coronas with four sets of meteorological variables.
This article is included in the Encyclopedia of Geosciences
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
This article is included in the Encyclopedia of Geosciences
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
This article is included in the Encyclopedia of Geosciences
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022, https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
This article is included in the Encyclopedia of Geosciences
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
This article is included in the Encyclopedia of Geosciences
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
This article is included in the Encyclopedia of Geosciences
Alejandro Luque, Francisco José Gordillo-Vázquez, Dongshuai Li, Alejandro Malagón-Romero, Francisco Javier Pérez-Invernón, Anthony Schmalzried, Sergio Soler, Olivier Chanrion, Matthias Heumesser, Torsten Neubert, Víctor Reglero, and Nikolai Østgaard
Geosci. Model Dev., 13, 5549–5566, https://doi.org/10.5194/gmd-13-5549-2020, https://doi.org/10.5194/gmd-13-5549-2020, 2020
Short summary
Short summary
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs for weather forecasting, these observations also enable research into fundamental questions regarding lightning physics. To exploit them, it is essential to understand how light propagates from a lightning flash to a space-based observation instrument. Here, we present an open-source software tool to model this process that extends on previous work and overcomes some of the existing limitations.
This article is included in the Encyclopedia of Geosciences
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
This article is included in the Encyclopedia of Geosciences
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
This article is included in the Encyclopedia of Geosciences
Xinhua Wei, Chunlin Cai, Henri Rème, Iannis Dandouras, and George Parks
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-124, https://doi.org/10.5194/angeo-2018-124, 2018
Revised manuscript not accepted
Short summary
Short summary
Observations of flapping current sheet in the magnetotail are presented to reveal their intrinsic excitation mechanism induced by alternating north-south asymmetric ion populations in the sheet center. The results suggest that nonadiabatic ions play a substantial role to determine current sheet dynamics, both its bulk mechanical instability and current profiles.
This article is included in the Encyclopedia of Geosciences
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
This article is included in the Encyclopedia of Geosciences
David Sarria, Casper Rutjes, Gabriel Diniz, Alejandro Luque, Kevin M. A. Ihaddadene, Joseph R. Dwyer, Nikolai Østgaard, Alexander B. Skeltved, Ivan S. Ferreira, and Ute Ebert
Geosci. Model Dev., 11, 4515–4535, https://doi.org/10.5194/gmd-11-4515-2018, https://doi.org/10.5194/gmd-11-4515-2018, 2018
Short summary
Short summary
We evaluate three models (Geant4, REAM, GRRR) used in the field of high-energy atmospheric physics that are able to simulate relativistic runaway electron avalanches. Several models have been used by the community, but there was, up until now, no study evaluating their consistency in this context. We conclude that there are no major differences to report, and we discuss minor ones. We also provide advice on how to properly set up the general purpose code (Geant4) in this context.
This article is included in the Encyclopedia of Geosciences
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
This article is included in the Encyclopedia of Geosciences
Constantinos Papadimitriou, Georgios Balasis, Ioannis A. Daglis, and Omiros Giannakis
Ann. Geophys., 36, 287–299, https://doi.org/10.5194/angeo-36-287-2018, https://doi.org/10.5194/angeo-36-287-2018, 2018
Short summary
Short summary
Swarm is the fourth Earth Explorer mission of the European Space Agency (ESA), launched on 23 November 2013. The mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. This study presents an initial attempt to derive an ultra low-frequency (ULF) wave index from low-Earth orbit satellite data. The technique can be potentially used to define a new product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.
This article is included in the Encyclopedia of Geosciences
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
This article is included in the Encyclopedia of Geosciences
Dhvanit Mehta, Andrew J. Gerrard, Yusuke Ebihara, Allan T. Weatherwax, and Louis J. Lanzerotti
Atmos. Chem. Phys., 17, 911–919, https://doi.org/10.5194/acp-17-911-2017, https://doi.org/10.5194/acp-17-911-2017, 2017
Short summary
Short summary
This paper presents an investigation into the sources of atmospheric gravity waves observed at 90 km above Amundsen-Scott South Pole Station, Antarctica. By combining gravity wave characteristics obtained from imager data and a numerical model for 3-D wave propagation through the atmosphere, we find that the development of baroclinic instabilities via displacement of the polar vortex is a significant and unique source of vertically propagating, short-period (< 1 h) gravity waves in the region.
This article is included in the Encyclopedia of Geosciences
Casper Rutjes, David Sarria, Alexander Broberg Skeltved, Alejandro Luque, Gabriel Diniz, Nikolai Østgaard, and Ute Ebert
Geosci. Model Dev., 9, 3961–3974, https://doi.org/10.5194/gmd-9-3961-2016, https://doi.org/10.5194/gmd-9-3961-2016, 2016
Short summary
Short summary
High energy atmospheric physics includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. It requires appropriate models for the interaction of energetic particles with the atmosphere. We benchmark general purpose and custom-made codes against each other. We focus on basic tests, namely on the evolution of particles through air in the absence of electric and magnetic fields, providing a first benchmark for present and future custom-made codes.
This article is included in the Encyclopedia of Geosciences
K. Kauristie, M. V. Uspensky, N. G. Kleimenova, O. V. Kozyreva, M. M. J. L. Van De Kamp, S. V. Dubyagin, and S. Massetti
Ann. Geophys., 34, 379–392, https://doi.org/10.5194/angeo-34-379-2016, https://doi.org/10.5194/angeo-34-379-2016, 2016
Short summary
Short summary
This study presents some example events in which sudden changes in the auroral activity at midnight sector seem to have an impact on the intensity of morning-sector magnetic pulsations. Mechanisms which could link these two separate regions are discussed in the paper. Sudden changes in the solar wind properties and fast westward-propagating electrons are suggested to explain the coupling between midnight-sector and morning-sector phenomena.
This article is included in the Encyclopedia of Geosciences
C. Tsironis, A. Anastasiadis, C. Katsavrias, and I. A. Daglis
Ann. Geophys., 34, 171–185, https://doi.org/10.5194/angeo-34-171-2016, https://doi.org/10.5194/angeo-34-171-2016, 2016
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016, https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
This article is included in the Encyclopedia of Geosciences
V. A. Sergeev, I. A. Chernyaev, V. Angelopoulos, and N. Y. Ganushkina
Ann. Geophys., 33, 1485–1493, https://doi.org/10.5194/angeo-33-1485-2015, https://doi.org/10.5194/angeo-33-1485-2015, 2015
Short summary
Short summary
Adaptive magnetospheric models based on THEMIS magnetic observations made at 6-9Re in the nightside magnetosphere are used to map the magnetically conjugate 30 and 80keV proton isotropy boundaries (IBs) to investigate the value of Kib=Rc/rc (magnetic curvature radius to particle gyroradius) in the neutral sheet at the IB generation place. For the most accurate mapping, the group Kib spread spans from 4 to 32; its median value is ~13, slightly larger than Kib8 expected for current sheet scatter.
This article is included in the Encyclopedia of Geosciences
M. Georgiou, I. A. Daglis, E. Zesta, G. Balasis, I. R. Mann, C. Katsavrias, and K. Tsinganos
Ann. Geophys., 33, 1431–1442, https://doi.org/10.5194/angeo-33-1431-2015, https://doi.org/10.5194/angeo-33-1431-2015, 2015
Short summary
Short summary
Our study demonstrates a remarkable association between the earthward penetration of ULF waves and radiation belt electron enhancements during four magnetic storms that occurred in 2001. In the past, ULF waves had been observed at unusual depths during rare superstorms. But ULF wave activity, reaching magnetic shells as low as 2, was also observed during relatively intense storms when it played a key role in diffusing electrons radially inward and thereby accelerating them to higher energies.
This article is included in the Encyclopedia of Geosciences
E. Lee, G. K. Parks, S. Y. Fu, M. Fillingim, Y. B. Cui, J. Hong, I. Dandouras, and H. Rème
Ann. Geophys., 33, 1263–1269, https://doi.org/10.5194/angeo-33-1263-2015, https://doi.org/10.5194/angeo-33-1263-2015, 2015
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
V. A. Sergeev, S. A. Chernyaeva, S. V. Apatenkov, N. Y. Ganushkina, and S. V. Dubyagin
Ann. Geophys., 33, 1059–1070, https://doi.org/10.5194/angeo-33-1059-2015, https://doi.org/10.5194/angeo-33-1059-2015, 2015
Short summary
Short summary
We investigate the precipitated-to-trapped flux ratio patterns near the proton isotropy boundary (IB) using NOAA-POES observations. For 30 and 80keV proton energies, we found only 31% of events showing the dispersion pattern predicted by the non-adiabatic scattering in the tail current sheet. Most frequent pattern had no measureable IB energy dispersion (63%); structured IBs with a few Jprec/Jtrap dropouts were also usual (60%). Roles of current sheet and wave-induced scattering are discussed.
This article is included in the Encyclopedia of Geosciences
M. W. Liemohn, R. M. Katus, and R. Ilie
Ann. Geophys., 33, 965–982, https://doi.org/10.5194/angeo-33-965-2015, https://doi.org/10.5194/angeo-33-965-2015, 2015
Short summary
Short summary
The different electric current systems flowing in the near-Earth nightside magnetosphere each have a unique contribution to the magnetic and electric field distortion of geospace. This study quantifies the intensity and timing of five current systems as calculated from 90 storm events using an inner magnetospheric drift physics model. There is a systematic progression through the various current systems, leading to implications for nonlinear feedback on the geospace system.
This article is included in the Encyclopedia of Geosciences
A. V. Nikolaev, V. A. Sergeev, N. A. Tsyganenko, M. V. Kubyshkina, H. Opgenoorth, H. Singer, and V. Angelopoulos
Ann. Geophys., 33, 505–517, https://doi.org/10.5194/angeo-33-505-2015, https://doi.org/10.5194/angeo-33-505-2015, 2015
Short summary
Short summary
In this study we use two-loop model SCW (SCW2L) to quantitatively investigate distortion of the ionospheric footpoint pattern in response to changes of different SCW2L parameters. Calculation results show that SCW-related footprint shifts result in formation of auroral bulge and westward travelling surge and may contribute to rotation of auroral streamers, and that SCW2L combined with the AM03 model nicely describes the azimuthal progression and the observed magnitude of the auroral expansion.
This article is included in the Encyclopedia of Geosciences
G. K. Parks, E. Lee, S. Y. Fu, M. Fillingim, I. Dandouras, Y. B. Cui, J. Hong, and H. Rème
Ann. Geophys., 33, 333–344, https://doi.org/10.5194/angeo-33-333-2015, https://doi.org/10.5194/angeo-33-333-2015, 2015
Short summary
Short summary
Ions from Earth's ionosphere continually escape into space. This article examines ions escaping the auroral oval, a region in the polar region of Earth where auroras occur. Previous works have shown that ionospheric ions escape during active auroras, and more as the intensity of the aurora increases. In contrast, we have examined times of no auroras and find that ions are still escaping the auroral ionosphere. These escaping ions are an important source of auroral ions in the magnetosphere.
This article is included in the Encyclopedia of Geosciences
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
A. Blagau, I. Dandouras, A. Barthe, S. Brunato, G. Facskó, and V. Constantinescu
Geosci. Instrum. Method. Data Syst., 3, 49–58, https://doi.org/10.5194/gi-3-49-2014, https://doi.org/10.5194/gi-3-49-2014, 2014
T. M. Giannaros, D. Melas, I. A. Daglis, and I. Keramitsoglou
Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, https://doi.org/10.5194/nhess-14-347-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
P. Kajdič, X. Blanco-Cano, N. Omidi, K. Meziane, C. T. Russell, J.-A. Sauvaud, I. Dandouras, and B. Lavraud
Ann. Geophys., 31, 2163–2178, https://doi.org/10.5194/angeo-31-2163-2013, https://doi.org/10.5194/angeo-31-2163-2013, 2013
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
I. Dandouras
Ann. Geophys., 31, 1143–1153, https://doi.org/10.5194/angeo-31-1143-2013, https://doi.org/10.5194/angeo-31-1143-2013, 2013
C. P. Escoubet, J. Berchem, K. J. Trattner, F. Pitout, R. Richard, M. G. G. T. Taylor, J. Soucek, B. Grison, H. Laakso, A. Masson, M. Dunlop, I. Dandouras, H. Reme, A. Fazakerley, and P. Daly
Ann. Geophys., 31, 713–723, https://doi.org/10.5194/angeo-31-713-2013, https://doi.org/10.5194/angeo-31-713-2013, 2013
S. Dubyagin, N. Ganushkina, S. Apatenkov, M. Kubyshkina, H. Singer, and M. Liemohn
Ann. Geophys., 31, 395–408, https://doi.org/10.5194/angeo-31-395-2013, https://doi.org/10.5194/angeo-31-395-2013, 2013
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify...
Special issue