Articles | Volume 32, issue 12
https://doi.org/10.5194/angeo-32-1455-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-1455-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Correlation of very low and low frequency signal variations at mid-latitudes with magnetic activity and outer-zone particles
Institute of Physics of the Earth, Russian Academy of Sciences, 10 B. Gruzinskaya, Moscow, 123995, Russia
M. Solovieva
Institute of Physics of the Earth, Russian Academy of Sciences, 10 B. Gruzinskaya, Moscow, 123995, Russia
V. Fedun
Space Systems Laboratory, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK
M. Hayakawa
University of Electro-Communications, Advanced Wireless Communications Research Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585, Japan
K. Schwingenschuh
Space Research Institute, Austrian Academy of Sciences, 6 Schmiedlstraße, 8042, Graz, Austria
B. Levin
Institute of marine geology and geophysics Far East Branch of Russian Academy of Sciences, 1B Nauki str., Yuzhno-Sakhalinsk, 693022, Russia
Related authors
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
A. Rozhnoi, M. Solovieva, B. Levin, M. Hayakawa, and V. Fedun
Nat. Hazards Earth Syst. Sci., 14, 2671–2679, https://doi.org/10.5194/nhess-14-2671-2014, https://doi.org/10.5194/nhess-14-2671-2014, 2014
Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, and Konrad Schwingenschuh
Geosci. Instrum. Method. Data Syst., 12, 231–237, https://doi.org/10.5194/gi-12-231-2023, https://doi.org/10.5194/gi-12-231-2023, 2023
Short summary
Short summary
We present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka).
Anatoliy Lozbin, Viktor Fedun, and Olga Kryakunova
Ann. Geophys., 40, 55–65, https://doi.org/10.5194/angeo-40-55-2022, https://doi.org/10.5194/angeo-40-55-2022, 2022
Short summary
Short summary
Detection of Ionosphere Anomalies (DIA) for detection, identification, and analysis of ionosphere anomalies from satellite spectrograms and time series row data from instruments onboard the DEMETER satellite was designed. Using this software, the analyses of ionosphere parameter variations caused by various factors are provided. The scientific data processing and visualization technologies used in the development of DIA can be used in the creation of software for other scientific space missions.
Mohammed Y. Boudjada, Patrick H. M. Galopeau, Sami Sawas, Valery Denisenko, Konrad Schwingenschuh, Helmut Lammer, Hans U. Eichelberger, Werner Magnes, and Bruno Besser
Ann. Geophys., 38, 765–774, https://doi.org/10.5194/angeo-38-765-2020, https://doi.org/10.5194/angeo-38-765-2020, 2020
Short summary
Short summary
In this paper, we report on observations of frequency-banded wave emissions by ICE (Instrument Champ Électrique) on board DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions). We distinguish two components: positive and negative frequency drift rates and multiple spaced frequency bands near the magnetic equatorial plane. We show and discuss the non-free-space DEMETER frequency-banded emissions and the free-space terrestrial kilometric radiation.
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
Yuriy G. Rapoport, Oleg K. Cheremnykh, Volodymyr V. Koshovy, Mykola O. Melnik, Oleh L. Ivantyshyn, Roman T. Nogach, Yuriy A. Selivanov, Vladimir V. Grimalsky, Valentyn P. Mezentsev, Larysa M. Karataeva, Vasyl. M. Ivchenko, Gennadi P. Milinevsky, Viktor N. Fedun, and Eugen N. Tkachenko
Ann. Geophys., 35, 53–70, https://doi.org/10.5194/angeo-35-53-2017, https://doi.org/10.5194/angeo-35-53-2017, 2017
Short summary
Short summary
Before many catastrophic phenomena such as earthquakes, sound is generated at a very low frequency. It is already established that it can disturb the upper layer of the atmosphere – the ionosphere. Control of disasters' precursors is important. Using the unique, powerful sound generator, whose loudness is comparable to an ascending jet, we have constructed the theory and conducted a series of experiments trying to model acoustic action of disasters on the ionosphere.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
O. Onishchenko, O. Pokhotelov, W. Horton, and V. Fedun
Ann. Geophys., 33, 1343–1347, https://doi.org/10.5194/angeo-33-1343-2015, https://doi.org/10.5194/angeo-33-1343-2015, 2015
A. Rozhnoi, M. Solovieva, B. Levin, M. Hayakawa, and V. Fedun
Nat. Hazards Earth Syst. Sci., 14, 2671–2679, https://doi.org/10.5194/nhess-14-2671-2014, https://doi.org/10.5194/nhess-14-2671-2014, 2014
Yu. Rapoport, Yu. Selivanov, V. Ivchenko, V. Grimalsky, E. Tkachenko, A. Rozhnoi, and V. Fedun
Ann. Geophys., 32, 449–463, https://doi.org/10.5194/angeo-32-449-2014, https://doi.org/10.5194/angeo-32-449-2014, 2014
O. Onishchenko, O. Pokhotelov, W. Horton, A. Smolyakov, T. Kaladze, and V. Fedun
Ann. Geophys., 32, 181–186, https://doi.org/10.5194/angeo-32-181-2014, https://doi.org/10.5194/angeo-32-181-2014, 2014
B. Levin, A. Domanski, and E. Sasorova
Adv. Geosci., 35, 137–144, https://doi.org/10.5194/adgeo-35-137-2014, https://doi.org/10.5194/adgeo-35-137-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
A. Kryshtal, S. Gerasimenko, A. Voitsekhovska, and V. Fedun
Ann. Geophys., 31, 2193–2200, https://doi.org/10.5194/angeo-31-2193-2013, https://doi.org/10.5194/angeo-31-2193-2013, 2013
S. Zharkov, S. Shelyag, V. Fedun, R. Erdélyi, and M. J. Thompson
Ann. Geophys., 31, 1357–1364, https://doi.org/10.5194/angeo-31-1357-2013, https://doi.org/10.5194/angeo-31-1357-2013, 2013
E. V. Sasorova, B. W. Levin, and M. V. Rodkin
Adv. Geosci., 35, 15–21, https://doi.org/10.5194/adgeo-35-15-2013, https://doi.org/10.5194/adgeo-35-15-2013, 2013
O. Onishchenko, O. Pokhotelov, and V. Fedun
Ann. Geophys., 31, 459–462, https://doi.org/10.5194/angeo-31-459-2013, https://doi.org/10.5194/angeo-31-459-2013, 2013