Articles | Volume 44, issue 1
https://doi.org/10.5194/angeo-44-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-44-1-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time-dependent modeling of Alfvénic precipitation observed in the ionosphere
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Andres Spicher
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Björn Gustavsson
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
James Clemmons
Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA
Robert Pfaff
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Douglas Rowland
NASA Goddard Space Flight Center, Greenbelt, MD, United States
Related authors
No articles found.
Ingeborg Frøystein, Andres Spicher, and Kjellmar Oksavik
EGUsphere, https://doi.org/10.5194/egusphere-2025-6188, https://doi.org/10.5194/egusphere-2025-6188, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The dayside auroral region is a highly dynamic region of the ionosphere that is influenced by the coupling between the solar wind, magnetosphere, and ionosphere. In this paper, we illustrate this dynamic nature and present a quantitative analysis of both altitudinal and latitudinal variation within the region. In addition, ionospheric parameters on closed field lines, along the open-closed field line boundary and in the polar cap are statistically compared.
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
Ann. Geophys., 43, 633–649, https://doi.org/10.5194/angeo-43-633-2025, https://doi.org/10.5194/angeo-43-633-2025, 2025
Short summary
Short summary
This study addresses the design of next-generation incoherent scatter radar experiments used to study the ionosphere, particularly with systems that have multiple sites. We have developed a method to estimate uncertainties of measurements of plasma density, temperature, and ion drift. Our method is open-source, and helps to optimize radar configurations and assess the effectiveness of an experiment. This method ultimately serves to enhance our understanding of Earth's space environment.
Kian Sartipzadeh, Andreas Kvammen, Björn Gustavsson, Njål Gulbrandsen, Magnar Gullikstad Johnsen, Devin Huyghebaert, and Juha Vierinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3070, https://doi.org/10.5194/egusphere-2025-3070, 2025
Short summary
Short summary
Knowing charged particle densities high above Earth is key for forecasting space weather effects on satellites and communications, but they are difficult to estimate at high latitudes because of auroras. We built an artificial intelligence model for northern Norway using radar observations, magnetic field measurements, geophysical indices and solar activity. It produces more accurate estimates than existing methods, even during auroral events, and can be adapted to other regions.
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323, https://doi.org/10.5194/egusphere-2025-2323, 2025
Short summary
Short summary
The phenomena of meteors occurs at altitudes of 60–120 km and can be used to measure the neutral atmosphere. We use a large high power radar system in Norway (MAARSY) to determine changes to the atmospheric density between the years of 2016–2023 at altitudes of 85–115 km. The same day-of-year is compared, minimizing changes to the measurements due to factors other than the atmosphere. This presents a novel method by which to obtain atmospheric neutral density variations.
Oliver Stalder, Björn Gustavsson, and Ilkka Virtanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2340, https://doi.org/10.5194/egusphere-2025-2340, 2025
Short summary
Short summary
The rapid changes in ion composition during auroral are dynamically modeled by integrating the coupled continuity equations for 15 ionospheric species. The effect of the ionospheric variation on the inversion of ISR electron density profiles to differential energy spectra of precipitating electrons is studied. A systematic overestimation at high electron energies can be removed using a dynamic model. Comparisons are made with static and steady-state ionospheric models.
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer M. Hatch, and Karl M. Laundal
Ann. Geophys., 43, 99–113, https://doi.org/10.5194/angeo-43-99-2025, https://doi.org/10.5194/angeo-43-99-2025, 2025
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements at spatial scales of less than 100 m using multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024, https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Short summary
We present via simulation how useful monochromatic images taken by a multi-point imager network are for auroral research in the EISCAT_3D project. We apply the generalized-aurora computed tomography (G-ACT) to modeled multiple auroral images and ionospheric electron density data. It is demonstrated that G-ACT provides better reconstruction results than the normal ACT and can interpolate ionospheric electron density at a much higher spatial resolution than observed by the EISCAT_3D radar.
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-18, https://doi.org/10.5194/gi-2023-18, 2024
Preprint under review for GI
Short summary
Short summary
We present a second-level calibration method for electron density measurements from multi-beam incoherent scatter radars. It is based on the well-known Flat field correction method used in imaging and photography. The methods improve data quality and useability as they account for unaccounted, and unpredictable variations in the radar system. This is valuable for studies where inter-beam calibration is important such as studies of polar cap patches, plasma irregularities and turbulence.
Thomas B. Leyser, Tima Sergienko, Urban Brändström, Björn Gustavsson, and Michael T. Rietveld
Ann. Geophys., 41, 589–600, https://doi.org/10.5194/angeo-41-589-2023, https://doi.org/10.5194/angeo-41-589-2023, 2023
Short summary
Short summary
Powerful radio waves transmitted into the ionosphere from the ground were used to study electron energization in the pumped ionospheric plasma turbulence, by detecting optical emissions from atomic oxygen. Our results obtained with the EISCAT (European Incoherent Scatter Scientific Association) facilities in northern Norway and optical detection with the ALIS (Auroral Large Imaging System) in northern Sweden suggest that long-wavelength upper hybrid waves are important in accelerating electrons.
Johann Stamm, Juha Vierinen, Björn Gustavsson, and Andres Spicher
Ann. Geophys., 41, 55–67, https://doi.org/10.5194/angeo-41-55-2023, https://doi.org/10.5194/angeo-41-55-2023, 2023
Short summary
Short summary
The study of some ionospheric events benefit from the knowledge of how the physics varies over a volume and over time. Examples are studies of aurora or energy deposition. With EISCAT3D, measurements of ion velocity vectors in a volume will be possible for the first time. We present a technique that uses a set of such measurements to estimate electric field and neutral wind. The technique relies on adding restrictions to the estimates. We successfully consider restrictions based on physics.
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023, https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Short summary
We measured the height of green and blue aurorae using thousands of camera images recorded over a 7-year period. Both colours are typically brightest at about 114 km altitude. When they peak at higher altitudes the blue aurora is usually higher than the green aurora. This information will help other studies which need an estimate of the auroral height. We used a computer model to explain our observations and to investigate how the green aurora is produced.
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022, https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Short summary
The pulsating auroral generation mechanism has been investigated by observing precipitating electrons using rockets or satellites. However, it is difficult for such observations to distinguish temporal changes from spatial ones. In this study, we reconstructed the horizontal 2-D distribution of precipitating electrons using only auroral images. The 3-D aurora structure was also reconstructed. We found that there were both spatial and temporal changes in the precipitating electron energy.
Johann Stamm, Juha Vierinen, and Björn Gustavsson
Ann. Geophys., 39, 961–974, https://doi.org/10.5194/angeo-39-961-2021, https://doi.org/10.5194/angeo-39-961-2021, 2021
Short summary
Short summary
Measurements of the electric field and neutral wind in the ionosphere are important for understanding energy flows or electric currents. With incoherent scatter radars (ISRs), we can measure the velocity of the ions, which depends on both the electrical field and the neutral wind. In this paper, we investigate methods to use ISR data to find reasonable values for both parameters. We find that electric field can be well measured down to 125 km height and neutral wind below this height.
Torbjørn Tveito, Juha Vierinen, Björn Gustavsson, and Viswanathan Lakshmi Narayanan
Ann. Geophys., 39, 427–438, https://doi.org/10.5194/angeo-39-427-2021, https://doi.org/10.5194/angeo-39-427-2021, 2021
Short summary
Short summary
This work explores the role of EISCAT 3D as a tool for planetary mapping. Due to the challenges inherent in detecting the signals reflected from faraway bodies, we have concluded that only the Moon is a viable mapping target. We estimate the impact of the ionosphere on lunar mapping, concluding that its distorting effects should be easily manageable. EISCAT 3D will be useful for mapping the lunar nearside due to its previously unused frequency (233 MHz) and its interferometric capabilities.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Johann Stamm, Juha Vierinen, Juan M. Urco, Björn Gustavsson, and Jorge L. Chau
Ann. Geophys., 39, 119–134, https://doi.org/10.5194/angeo-39-119-2021, https://doi.org/10.5194/angeo-39-119-2021, 2021
Cited articles
Andersson, L., Ivchenko, N., Clemmons, J., Namgaladze, A. A., Gustavsson, B., Wahlund, J.-E., Eliasson, L., and Yurik, R. Y.: Electron signatures and Alfvén waves, Journal of Geophysical Research: Space Physics, 107, SMP 15-1–SMP 15-14, https://doi.org/10.1029/2001JA900096, 2002. a, b, c
Arnoldy, R. L., Lynch, K. A., Austin, J. B., and Kintner, P. M.: Energy and pitch angle-dispersed auroral electrons suggesting a time-variable, inverted-V potential structure, Journal of Geophysical Research: Space Physics, 104, 22613–22621, https://doi.org/10.1029/1999JA900219, 1999. a
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Review, 59, 65–98, https://doi.org/10.1137/141000671, 2017. a
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., and Huang, X.: International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions, Space Weather, 15, 418–429, https://doi.org/10.1002/2016SW001593, 2017. a, b
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M., and Zelenyi, L. M.: Particle Acceleration in the Magnetotail and Aurora, Space Science Reviews, 173, 49–102, https://doi.org/10.1007/s11214-012-9874-4, 2012. a
Buschmann, L. M., Bonnell, J. W., Bounds, S., Clausen, L. B., Kletzing, C., Marholm, S., Miloch, W. J., Roglans, R., and Spicher, A.: The role of particle precipitation on plasma structuring at different altitudes by in-situ measurements, Journal of Space Weather and Space Climate, 13, 13, https://doi.org/10.1051/swsc/2023012, 2023. a
Chaston, C. C., Bonnell, J. W., Peticolas, L. M., Carlson, C. W., McFadden, J. P., and Ergun, R. E.: Driven Alfven waves and electron acceleration: A FAST case study, Geophysical Research Letters, 29, 30-1–30-4, https://doi.org/10.1029/2001GL013842, 2002. a
Chaston, C. C., Carlson, C. W., McFadden, J. P., Ergun, R. E., and Strangeway, R. J.: How important are dispersive Alfvén waves for auroral particle acceleration?, Geophysical Research Letters, 34, L07101, https://doi.org/10.1029/2006GL029144, 2007. a
Cohen, I. J., Lessard, M. R., Kaeppler, S. R., Bounds, S. R., Kletzing, C. A., Streltsov, A. V., LaBelle, J. W., Dombrowski, M. P., Jones, S. L., Pfaff, R. F., Rowland, D. E., Anderson, B. J., Korth, H., and Gjerloev, J. W.: Auroral Current and Electrodynamics Structure (ACES) observations of ionospheric feedback in the Alfvén resonator and model responses, Journal of Geophysical Research: Space Physics, 118, 3288–3296, https://doi.org/10.1002/jgra.50348, 2013. a
Colpitts, C. A., Hakimi, S., Cattell, C. A., Dombeck, J., and Maas, M.: Simultaneous ground and satellite observations of discrete auroral arcs, substorm aurora, and Alfvénic aurora with FAST and THEMIS GBO, Journal of Geophysical Research: Space Physics, 118, 6998–7010, https://doi.org/10.1002/2013JA018796, 2013. a
Cowley, S. W. H.: Magnetosphere-Ionosphere Interactions: A Tutorial Review, in: Magnetospheric Current Systems, pp. 91–106, American Geophysical Union (AGU), ISBN 978-1-118-66900-6, https://doi.org/10.1029/GM118p0091, 2000. a
Dahlgren, H., Ivchenko, N., Sullivan, J., Lanchester, B. S., Marklund, G., and Whiter, D.: Morphology and dynamics of aurora at fine scale: first results from the ASK instrument, Ann. Geophys., 26, 1041–1048, https://doi.org/10.5194/angeo-26-1041-2008, 2008. a
Dahlgren, H., Semeter, J. L., Marshall, R. A., and Zettergren, M.: The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs, Journal of Geophysical Research: Space Physics, 118, 4572–4582, https://doi.org/10.1002/jgra.50415, 2013. a, b, c
Danisch, S. and Krumbiegel, J.: Makie.jl: Flexible high-performance data visualization for Julia, Journal of Open Source Software, 6, 3349, https://doi.org/10.21105/joss.03349, 2021. a
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones Jr., M., Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B., Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E., Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities, Earth and Space Science, 8, e2020EA001321, https://doi.org/10.1029/2020EA001321, 2021. a, b
Frank, L. A. and Ackerson, K. L.: Observations of charged particle precipitation into the auroral zone, Journal of Geophysical Research (1896–1977), 76, 3612–3643, https://doi.org/10.1029/JA076i016p03612, 1971. a
Gabrielse, C., Nishimura, T., Chen, M., Hecht, J. H., Kaeppler, S. R., Gillies, D. M., Reimer, A. S., Lyons, L. R., Deng, Y., Donovan, E., and Evans, J. S.: Estimating Precipitating Energy Flux, Average Energy, and Hall Auroral Conductance From THEMIS All-Sky-Imagers With Focus on Mesoscales, Frontiers in Physics, 9, https://doi.org/10.3389/fphy.2021.744298, 2021. a, b
Gavazzi, E.: The effects of time-variation of electron fluxes from the auroral ionosphere on M-I coupling, Master's thesis, UiT Norges arktiske universitet, https://munin.uit.no/handle/10037/25897 (last access: 23 December 2025), 2022. a
Gavazzi, E.: Replication material for “Time-dependent modeling of Alfvénic precipitation observed in the ionosphere”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.17582785, 2025. a
Gavazzi, E. and Gustavsson, B.: AURORA.jl, Zenodo [software], https://doi.org/10.5281/zenodo.17524182, 2025. a, b, c, d
Grubbs II, G., Michell, R., Samara, M., Hampton, D., and Jahn, J.-M.: Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging, Geophysical Research Letters, 45, 15–20, https://doi.org/10.1002/2017GL075873, 2018. a, b
Gurnett, D. A. and Frank, L. A.: Observed relationships between electric fields and auroral particle precipitation, Journal of Geophysical Research (1896–1977), 78, 145–170, https://doi.org/10.1029/JA078i001p00145, 1973. a
Gustavsson, B., Lunde, J., and Blixt, E. M.: Optical observations of flickering aurora and its spatiotemporal characteristics, Journal of Geophysical Research: Space Physics, 113, https://doi.org/10.1029/2008JA013515, 2008. a
Hecht, Christensen, Strickland, and Meier: Deducing composition and incident electron spectra from ground-based auroral optical measurements: Variations in oxygen density, Journal of Geophysical Research: Space Physics, 94, 13553–13563, https://doi.org/10.1029/JA094iA10p13553, 1989. a, b
Ilma, R.: rilma/pyIRI2016: Official release of the IRI2016 wrapper in Python, Zenodo [code], https://doi.org/10.5281/zenodo.240895, 2017. a
Kaeppler, S. R., Hampton, D. L., Nicolls, M. J., Strømme, A., Solomon, S. C., Hecht, J. H., and Conde, M. G.: An investigation comparing ground‐based techniques that quantify auroral electron flux and conductance, Journal of Geophysical Research: Space Physics, 120, 9038–9056, https://doi.org/10.1002/2015JA021396, 2015. a, b, c
Karlsson, T., Andersson, L., Gillies, D. M., Lynch, K., Marghitu, O., Partamies, N., Sivadas, N., and Wu, J.: Quiet, Discrete Auroral Arcs–Observations, Space Science Reviews, 216, 16, https://doi.org/10.1007/s11214-020-0641-7, 2020. a, b, c
Kelley, M. C.: The earth's ionosphere : plasma physics and electrodynamics, 96, Academic Press, Amsterdam, 2. ed edn., ISBN 9780080916576, 2009. a
Kletzing, C. A. and Hu, S.: Alfvén wave generated electron time dispersion, Geophysical Research Letters, 28, 693–696, https://doi.org/10.1029/2000GL012179, 2001. a, b, c
Knudsen, D. J., Borovsky, J. E., Karlsson, T., Kataoka, R., and Partamies, N.: Editorial: Topical Collection on Auroral Physics, Space Science Reviews, 217, 19, https://doi.org/10.1007/s11214-021-00798-8, 2021. a
Labelle, J., Sica, R. J., Kletzing, C., Earle, G. D., Kelley, M. C., Lummerzheim, D., Torbert, R. B., Baker, K. D., and Berg, G.: Ionization from soft electron precipitation in the auroral F region, Journal of Geophysical Research: Space Physics, 94, 3791–3798, https://doi.org/10.1029/JA094iA04p03791, 1989. a, b
Lanchester, B. S., Ashrafi, M., and Ivchenko, N.: Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N21P to estimate energy and flux of precipitation, Ann. Geophys., 27, 2881–2891, https://doi.org/10.5194/angeo-27-2881-2009, 2009. a
Lucas, G.: pymsis, Zenodo [software], https://doi.org/10.5281/zenodo.5348502, 2022. a
Lummerzheim, D. and Lilensten, J.: Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations, Ann. Geophys., 12, 1039–1051, https://doi.org/10.1007/s00585-994-1039-7, 1994. a, b, c, d
Lynch, K. A., Semeter, J. L., Zettergren, M., Kintner, P., Arnoldy, R., Klatt, E., LaBelle, J., Michell, R. G., MacDonald, E. A., and Samara, M.: Auroral ion outflow: low altitude energization, Ann. Geophys., 25, 1967–1977, https://doi.org/10.5194/angeo-25-1967-2007, 2007. a, b, c, d
Lysak, R., Echim, M., Karlsson, T., Marghitu, O., Rankin, R., Song, Y., and Watanabe, T.-H.: Quiet, Discrete Auroral Arcs: Acceleration Mechanisms, Space Science Reviews, 216, 92, https://doi.org/10.1007/s11214-020-00715-5, 2020. a, b, c, d
Lysak, R. L.: Electrodynamic coupling of the magnetosphere and ionosphere, Space Science Reviews, 52, 33–87, https://doi.org/10.1007/BF00704239, 1990. a
Lysak, R. L. and Dum, C. T.: Dynamics of magnetosphere-ionosphere coupling including turbulent transport, Journal of Geophysical Research: Space Physics, 88, 365–380, https://doi.org/10.1029/JA088iA01p00365, 1983. a
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M., Engler, N., Gustavsson, B., Heinselman, C., Kero, J., Kosch, M., Lamy, H., Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska, I., and Vierinen, J.: The science case for the EISCAT_3D radar, Progress in Earth and Planetary Science, 2, 21, https://doi.org/10.1186/s40645-015-0051-8, 2015. a
Meier, R. R., Strickland, D. J., Hecht, J. H., and Christensen, A. B.: Deducing composition and incident electron spectra from ground-based auroral optical measurements: A study of auroral red line processes, Journal of Geophysical Research: Space Physics, 94, 13541–13552, https://doi.org/10.1029/JA094iA10p13541, 1989. a, b
Miles, D. M., Mann, I. R., Pakhotin, I. P., Burchill, J. K., Howarth, A. D., Knudsen, D. J., Lysak, R. L., Wallis, D. D., Cogger, L. L., and Yau, A. W.: Alfvénic Dynamics and Fine Structuring of Discrete Auroral Arcs: Swarm and e-POP Observations, Geophysical Research Letters, 45, 545–555, https://doi.org/10.1002/2017GL076051, 2018. a, b
Moen, J., Walker, I. K., Kersley, L., and Milan, S. E.: On the generation of cusp HF backscatter irregularities, Journal of Geophysical Research: Space Physics, 107, SIA 3-1–SIA 3-5, https://doi.org/10.1029/2001JA000111, 2002. a
Moen, J., Oksavik, K., Alfonsi, L., Daabakk, Y., Romano, V., and Spogli, L.: Space weather challenges of the polar cap ionosphere, Journal of Space Weather and Space Climate, 3, A02, https://doi.org/10.1051/swsc/2013025, 2013. a, b
Omholt, A.: Pulsing Aurora, Springer Berlin Heidelberg, Berlin, Heidelberg, 155–174, ISBN 978-3-642-46269-6, https://doi.org/10.1007/978-3-642-46269-6_7, 1971. a
Pakhotin, I., Mann, I., Knudsen, D., Lysak, R., and Burchill, J.: Diagnosing the Role of Alfvén Waves in Global Field-Aligned Current System Dynamics During Southward IMF: Swarm Observations, Journal of Geophysical Research: Space Physics, 125, e2019JA027277, https://doi.org/10.1029/2019JA027277, 2020. a, b
Peticolas, L. and Lummerzheim, D.: Time-dependent transport of field-aligned bursts of electrons in flickering aurora, Journal of Geophysical Research: Space Physics, 105, 12895–12906, https://doi.org/10.1029/1999JA000398, 2000. a, b
Rees, M. H.: Auroral ionization and excitation by incident energetic electrons, Planetary and Space Science, 11, 1209–1218, https://doi.org/10.1016/0032-0633(63)90252-6, 1963. a
Rees, M. H.: Physics and Chemistry of the Upper Atmosphere, Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, ISBN 978-0-521-36848-3, https://doi.org/10.1017/CBO9780511573118, 1989. a, b, c
Reiff, P. H.: Models of Auroral-Zone Conductances, in: Magnetospheric Currents, American Geophysical Union (AGU), 180–191, ISBN 978-1-118-66413-1, https://doi.org/10.1029/GM028p0180, 1984. a
Semeter, J., Zettergren, M., Diaz, M., and Mende, S.: Wave dispersion and the discrete aurora: New constraints derived from high-speed imagery, Journal of Geophysical Research: Space Physics, 113, https://doi.org/10.1029/2008JA013122, 2008. a, b
Solomon, S. C.: Tomographic Inversion of Auroral Emissions (Photometry, Airglow), PhD, University of Michigan, United States – Michigan, https://www.proquest.com/docview/303570931 (last access: 23 December 2025), 1987. a
Solomon, S. C.: Global modeling of thermospheric airglow in the far ultraviolet, Journal of Geophysical Research: Space Physics, 122, 7834–7848, https://doi.org/10.1002/2017JA024314, 2017. a, b
Stamnes, K.: On the two-stream approach to electron transport and thermalization, Journal of Geophysical Research: Space Physics, 86, 2405–2410, https://doi.org/10.1029/JA086iA04p02405, 1981. a
Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., and Streltsov, A.: Small Scale Alfvénic Structure in the Aurora, Space Science Reviews, 92, 423–533, https://doi.org/10.1023/A:1005207202143, 2000. a, b, c, d
Streltsov, A. V. and Lotko, W.: Coupling between density structures, electromagnetic waves and ionospheric feedback in the auroral zone, Journal of Geophysical Research: Space Physics, 113, https://doi.org/10.1029/2007JA012594, 2008. a
Strickland, D. J., Book, D. L., Coffey, T. P., and Fedder, J. A.: Transport equation techniques for the deposition of auroral electrons, Journal of Geophysical Research (1896–1977), 81, 2755–2764, https://doi.org/10.1029/JA081i016p02755, 1976. a, b
Strickland D. J., Meier, R. R., Hecht, J. H., and Christensen, A. B.: Deducing composition and incident electron spectra from ground-based auroral optical measurements: Theory and model results, Journal of Geophysical Research: Space Physics, 94, 13527–13539, https://doi.org/10.1029/JA094iA10p13527, 1989. a
Takahashi, T., Spicher, A., Di Mare, F., Rowland, D. E., Pfaff, R. F., Collier, M. R., Clausen, L. B. N., and Moen, J. I.: Suppression of Ionospheric Irregularity Due to Auroral Particle Impact, Journal of Geophysical Research: Space Physics, 127, https://doi.org/10.1029/2020JA028725, 2022. a, b
Tanaka, H., Saito, Y., Asamura, K., Ishii, S., and Mukai, T.: High time resolution measurement of multiple electron precipitations with energy-time dispersion in high-latitude part of the cusp region, Journal of Geophysical Research: Space Physics, 110, https://doi.org/10.1029/2004JA010664, 2005. a
Trondsen, T. S. and Cogger, L. L.: A survey of small-scale spatially periodic distortions of auroral forms, Journal of Geophysical Research: Space Physics, 103, 9405–9415, https://doi.org/10.1029/98JA00619, 1998. a
Whiter, D. K., Lanchester, B. S., Gustavsson, B., Ivchenko, N., and Dahlgren, H.: Using multispectral optical observations to identify the acceleration mechanism responsible for flickering aurora, Journal of Geophysical Research: Space Physics, 115, https://doi.org/10.1029/2010JA015805, 2010. a, b
Yu, Y., Cao, J., Pu, Z., Jordanova, V. K., and Ridley, A.: Meso-Scale Electrodynamic Coupling of the Earth Magnetosphere-Ionosphere System, Space Science Reviews, 218, 74, https://doi.org/10.1007/s11214-022-00940-0, 2022. a, b
Short summary
Auroral precipitation refers to energetic particles that come down into the upper part of our atmosphere, the ionosphere. There, they collide with atoms and molecules and transfer some of their energy, causing aurora. The most rapid time-variation of this energy deposition and its consequences on the ionosphere are not fully understood. We show here that one can use a new model to study auroral precipitation on sub-second timescales and advance our understanding about small-scale dynamic aurora.
Auroral precipitation refers to energetic particles that come down into the upper part of our...