Articles | Volume 43, issue 2
https://doi.org/10.5194/angeo-43-369-2025
https://doi.org/10.5194/angeo-43-369-2025
Regular paper
 | 
03 Jul 2025
Regular paper |  | 03 Jul 2025

Modeling magnetopause location for 4D drift-resolved radiation belt codes: Salammbô model implementation

Rabia Kiraz, Nour Dahmen, Vincent Maget, and Benoit Lavraud

Related authors

Electron radiation belt safety indices based on the SafeSpace modelling pipeline and dedicated to the internal charging risk
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023,https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
The “SafeSpace” database of ULF power spectral density and radial diffusion coefficients: dependencies and application to simulations
Christos Katsavrias, Afroditi Nasi, Ioannis A. Daglis, Sigiava Aminalragia-Giamini, Nourallah Dahmen, Constantinos Papadimitriou, Marina Georgiou, Antoine Brunet, and Sebastien Bourdarie
Ann. Geophys., 40, 379–393, https://doi.org/10.5194/angeo-40-379-2022,https://doi.org/10.5194/angeo-40-379-2022, 2022
Short summary
Effect of plasma density on diffusion rates due to wave particle interactions with chorus and plasmaspheric hiss: extreme event analysis
A. Sicard-Piet, D. Boscher, R. B. Horne, N. P. Meredith, and V. Maget
Ann. Geophys., 32, 1059–1071, https://doi.org/10.5194/angeo-32-1059-2014,https://doi.org/10.5194/angeo-32-1059-2014, 2014

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Magnetopause, cusp, and boundary layers
Investigation of the occurrence of significant deviations in the magnetopause location: solar-wind and foreshock effects
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025,https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Magnetopause as conformal mapping
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023,https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Dayside magnetopause reconnection and flux transfer events under radial interplanetary magnetic field (IMF): BepiColombo Earth-flyby observations
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022,https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Plasma transport into the duskside magnetopause caused by Kelvin–Helmholtz vortices in response to the northward turning of the interplanetary magnetic field observed by THEMIS
Guang Qing Yan, George K. Parks, Chun Lin Cai, Tao Chen, James P. McFadden, and Yong Ren
Ann. Geophys., 38, 263–273, https://doi.org/10.5194/angeo-38-263-2020,https://doi.org/10.5194/angeo-38-263-2020, 2020
Short summary
Magnetospheric Multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms
Chen Zeng, Suping Duan, Chi Wang, Lei Dai, Stephen Fuselier, James Burch, Roy Torbert, Barbara Giles, and Christopher Russell
Ann. Geophys., 38, 123–135, https://doi.org/10.5194/angeo-38-123-2020,https://doi.org/10.5194/angeo-38-123-2020, 2020
Short summary

Cited articles

Andonov, B., Muhtarov, P., and Kutiev, I.: Analogue model, relating Kp index to solar wind parameters, J. Atmos. Sol.-Terr. Phys., 66, 927–932, https://doi.org/10.1016/j.jastp.2004.03.006, 2004. 
Bailey, D. K.: Some quantitative aspects of electron precipitation in and near the auroral zone, Rev. Geophys., 6, 289–346, https://doi.org/10.1029/RG006i003p00289, 1968. 
Baker, D. N., Jaynes, A. N., Kanekal, S. G., Foster, J. C., Erickson, P. J., Fennell, J. F., Blake, J. B., Zhao, H., Li, X., Elkington, S. R., Henderson, M. G., Reeves, G. D., Spence, H. E., Kletzing, C. A., and Wygant, J. R.: Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res.-Space, 121, 6647–6660, https://doi.org/10.1002/2016JA022502, 2016. 
Beutier, T. and Boscher, D.: A three-dimensional analysis of the electron radiation belt by the Salammbô code, J. Geophys. Res.-Space, 100, 14853–14861, https://doi.org/10.1029/94JA03066, 1995. 
Boscher, D., Bourdarie, S., Maget, V., Sicard-Piet, A., Rolland, G., and Standarovski, D.: High-Energy Electrons in the Inner Zone, IEEE Trans. Nucl. Sci., 65, 1546–1552, https://doi.org/10.1109/TNS.2018.2824543, 2018. 
Download
Short summary
The magnetopause represents the outer boundary of Earth's magnetosphere, protecting structures like the Van Allen radiation belts from solar wind. The magnetopause's position affects the radiation belts' behavior, causing strong and quick particle losses during geomagnetic storms. This study presents a new model to estimate the magnetopause position oriented toward drift-resolved radiation belt modeling codes.
Share