Articles | Volume 42, issue 2
https://doi.org/10.5194/angeo-42-313-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-42-313-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25
Theogene Ndacyayisenga
CORRESPONDING AUTHOR
College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
United Nations African Regional Centre for Space Science and Technology Education – English (UN-ARCSSTE-E), Obafemi Awolowo University, Ile-Ife, Nigeria
Jean Uwamahoro
College of Education, University of Rwanda, P.O. Box 55, Rwamagana, Rwanda
Jean Claude Uwamahoro
College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
Daniel Izuikedinachi Okoh
United Nations African Regional Centre for Space Science and Technology Education – English (UN-ARCSSTE-E), Obafemi Awolowo University, Ile-Ife, Nigeria
National Institute for Geophysics and Volcanology (INGV), 00143 Rome, Italy
Kantepalli Sasikumar Raja
Indian Institute of Astrophysics, II Block, Koramangala, Bengaluru 560 034, India
Akeem Babatunde Rabiu
United Nations African Regional Centre for Space Science and Technology Education – English (UN-ARCSSTE-E), Obafemi Awolowo University, Ile-Ife, Nigeria
Christian Kwisanga
College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
Christian Monstein
IRSOL, Istituto Ricerche Solari “Aldo e Cele Daccò”, Università della Svizzera italiana, Locarno, Switzerland
Related authors
Theogene Ndacyayisenga, Ange Cynthia Umuhire, Jean Uwamahoro, and Christian Monstein
Ann. Geophys., 39, 945–959, https://doi.org/10.5194/angeo-39-945-2021, https://doi.org/10.5194/angeo-39-945-2021, 2021
Short summary
Short summary
This paper summarises the results obtained by analysing the solar radio bursts detected by a single spectrogram installed at the University of Rwanda through the collaboration and the initiation of the space weather initiative. We aimed to show that data gaps in the African continent can be tracked by the deployment of cheap spectrograms, but their regular maintenance matters. In addition, the results show that the observation at a single station is a clue to studying space weather hazards.
Theogene Ndacyayisenga, Ange Cynthia Umuhire, Jean Uwamahoro, and Christian Monstein
Ann. Geophys., 39, 945–959, https://doi.org/10.5194/angeo-39-945-2021, https://doi.org/10.5194/angeo-39-945-2021, 2021
Short summary
Short summary
This paper summarises the results obtained by analysing the solar radio bursts detected by a single spectrogram installed at the University of Rwanda through the collaboration and the initiation of the space weather initiative. We aimed to show that data gaps in the African continent can be tracked by the deployment of cheap spectrograms, but their regular maintenance matters. In addition, the results show that the observation at a single station is a clue to studying space weather hazards.
Victor Adetayo Eyelade, Adekola Olajide Adewale, Andrew Ovie Akala, Olawale Segun Bolaji, and A. Babatunde Rabiu
Ann. Geophys., 35, 701–710, https://doi.org/10.5194/angeo-35-701-2017, https://doi.org/10.5194/angeo-35-701-2017, 2017
Short summary
Short summary
The study examined the diurnal and seasonal variations in total electron content (TEC) over Nigeria. The derived GPS TEC across all the stations demonstrated consistent minimum diurnal variations during the pre-sunrise hours, increased with a sharp gradient during the sunrise period, attained a postnoon maximum at about 14:00 LT, and then fell to a minimum just before sunset. The seasonal variation depicted a semi-annual distribution with higher values around equinoxes than solstices.
A. Babatunde Rabiu, Olanike Olufunmilayo Folarin, Teiji Uozumi, Nurul Shazana Abdul Hamid, and Akimasa Yoshikawa
Ann. Geophys., 35, 535–545, https://doi.org/10.5194/angeo-35-535-2017, https://doi.org/10.5194/angeo-35-535-2017, 2017
Short summary
Short summary
This work examined the longitudinal variability of the equatorial electrojet (EEJ) and the occurrence of its counter electrojet (CEJ) using the available records of the horizontal component H of the geomagnetic field simultaneously recorded in the year 2009 along the magnetic equator in South American, African, and Philippine sectors. Our results indicate that the EEJ and CEJ undergo longitudinal variability. More ground observation data points are required in the African equatorial zone.
A. B. Rabiu, B. O. Ogunsua, I. A. Fuwape, and J. A. Laoye
Nonlin. Processes Geophys., 22, 527–543, https://doi.org/10.5194/npg-22-527-2015, https://doi.org/10.5194/npg-22-527-2015, 2015
Short summary
Short summary
This paper describes chaos and dynamical complexity to reveal the state of the underlying dynamics of the ionosphere on a daily basis. This is to show the daily/transient variations of chaoticity and dynamical complexity so as to reveal the degree of changes that occur in the ionospheric process and dynamics from one day to another. This paper will point the space science community in the direction of the use of chaoticity and dynamical complexity as indices to describe the process and dynamics.
E. Yizengaw, M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. Rabiu, C. F. Valladares, and R. Stoneback
Ann. Geophys., 32, 231–238, https://doi.org/10.5194/angeo-32-231-2014, https://doi.org/10.5194/angeo-32-231-2014, 2014
Cited articles
AFREF: AFREF Reference Station Web Server, http://afrefdata.org (last access: 12 February 2024), 2024. a
Ahluwalia, H. S.: Forecast for sunspot cycle 25 activity, Adv. Space Res., 69, 794–797, https://doi.org/10.1016/j.asr.2021.09.035, 2022. a
Al-Awadi, R. S., Al-Taai, O. T., and Abdullah, S. A.: Assessment of X-Ray Effects on HF Radio Communications, IOP C. Ser. Earth Env., 1223, 012003, https://doi.org/10.1088/1755-1315/1223/1/012003, 2023. a, b
Amory-Mazaudier, C., Menvielle, M., Curto, J.-J., and Le Huy, M.: Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006–2016] Part A: Tutorial, Sun and Geosphere, 12, 1–19, 2017. a
Azzouzi, I., Migoya-Orué, Y., Amory Mazaudier, C., Fleury, R., Radicella, S. M., and Touzani, A.: Signatures of solar event at middle and low latitudes in the Europe-African sector, during geomagnetic storms, October 2013, Adv. Space Res., 56, 2040–2055, https://doi.org/10.1016/j.asr.2015.06.010, 2015. a
Benz, A. O., Monstein, C., and Meyer, H.: Callisto A New Concept for Solar Radio Spectrometers, Sol. Phys., 226, 143–151, https://doi.org/10.1007/s11207-005-5688-9, 2005. a
Benz, A. O., Monstein, C., Meyer, H., Manoharan, P. K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., and Cho, K. S.: A World-Wide Net of Solar Radio Spectrometers: e-CALLISTO, Earth Moon Planets, 104, 277–285, https://doi.org/10.1007/s11038-008-9267-6, 2009. a
Brajša, R., Verbanac, G., Bandić, M., Hanslmeier, A., Skokić, I., and Sudar, D.: A prediction for the 25th solar cycle maximum amplitude, Astron. Nachr., 343, e13960, https://doi.org/10.1002/asna.202113960, 2022. a
Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., and Eyles, C. J.: The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 162, 357–402, https://doi.org/10.1007/BF00733434, 1995. a
Cairns, I. H., Knock, S. A., Robinson, P. A., and Kuncic, Z.: Type II Solar Radio Bursts: Theory and Space Weather Implications, Space Sci. Rev., 107, 27–34, https://doi.org/10.1023/A:1025503201687, 2003. a
Cane, H. V. and Erickson, W. C.: Studies of Space Weather Using Solar Radio Bursts, in: From Clark Lake to the Long Wavelength Array: Bill Erickson's Radio Science, edited by: Kassim, N., Perez, M., Junor, W., and Henning, P., vol. 345, Astronomical Society of the Pacific Conference Series, ASP Conference Series, 345, p. 133, 2005. a
Carley, E. P., Vilmer, N., Simões, P. J. A., and Ó Fearraigh, B.: Estimation of a coronal mass ejection magnetic field strength using radio observations of gyrosynchrotron radiation, A&A, 608, A137, https://doi.org/10.1051/0004-6361/201731368, 2017. a
Carley, E. P., Cecconi, B., Reid, H. A., Briand, C., Sasikumar Raja, K., Masson, S., Dorovskyy, V., Tiburzi, C., Vilmer, N., Zucca, P., Zarka, P., Tagger, M., Grießmeier, J.-M., Corbel, S., Theureau, G., Loh, A., and Girard, J. N.: Observations of Shock Propagation through Turbulent Plasma in the Solar Corona, Astrophys. J., 921, 3, https://doi.org/10.3847/1538-4357/ac1acd, 2021. a
Cherniak, I., Zakharenkova, I., and Krankowski, A.: Approaches for modeling ionosphere irregularities based on the TEC rate index, Earth Planet. Space, 66, 165, https://doi.org/10.1186/PREACCEPT-1949710399128347, 2014. a
Chernov, G. and Fomichev, V.: On the Issue of the Origin of Type II Solar Radio Bursts, Astrophys. J., 922, 82, https://doi.org/10.3847/1538-4357/ac1f32, 2021. a, b, c, d
Cho, K. S., Lee, J., Gary, D. E., Moon, Y. J., and Park, Y. D.: Magnetic Field Strength in the Solar Corona from Type II Band Splitting, Astrophys. J., 665, 799–804, https://doi.org/10.1086/519160, 2007. a, b, c
Cho, K.-S., Gopalswamy, N., Kwon, R.-Y., Kim, R.-S., and Yashiro, S.: A high-frequency type ii solar radio burst associated with the 2011 february 13 coronal mass ejection, Astrophys. J., 765, 148, https://doi.org/10.1088/0004-637X/765/2/148, 2013. a
Cunha-Silva, R. D., Fernandes, F. C. R., and Selhorst, C. L.: Solar type II radio bursts associated with CME expansions as shown by EUV waves, A& A, 578, A38, https://doi.org/10.1051/0004-6361/201425388, 2015. a, b, c, d
Dang, T., Li, X., Luo, B., Li, R., Zhang, B., Pham, K., Ren, D., Chen, X., Lei, J., and Wang, Y.: Unveiling the Space Weather During the Starlink Satellites Destruction Event on 4 February 2022, Space Weather, 20, e2022SW003152, https://doi.org/10.1029/2022SW003152, 2022. a
Du, Z. L.: The solar cycle: predicting the peak of solar cycle 25, Astrophys. Space Sci., 365, 104, https://doi.org/10.1007/s10509-020-03818-1, 2020. a
Dugassa, T., Habarulema, J. B., and Nigussie, M.: Equatorial and low-latitude ionospheric TEC response to CIR-driven geomagnetic storms at different longitude sectors, Adv. Space Res., 66, 1947–1966, https://doi.org/10.1016/j.asr.2020.07.003, 2020. a
Dulk, G. A. and McLean, D. J.: Coronal magnetic fields, Sol. Phys., 57, 279–295, https://doi.org/10.1007/BF00160102, 1978. a, b, c
EarthScope Consortium: GNSS Data, https://www.unavco.org/ (last access: 12 February 2024), 2024. a
Fleishman, G. D., Gary, D. E., Chen, B., Kuroda, N., Yu, S., and Nita, G. M.: Decay of the coronal magnetic field can release sufficient energy to power a solar flare, Science, 367, 278–280, https://doi.org/10.1126/science.aax6874, 2020. a
Gopalswamy, N.: Coronal Mass Ejections and Solar Radio Emissions, in: Planetary, Solar and Heliospheric Radio Emissions (PRE VII), edited by: Rucker, H. O., Kurth, W. S., Louarn, P., and Fischer, G., 325–342, https://doi.org/10.1553/PRE7s325, 2011. a, b, c
Gopalswamy, N. and Yashiro, S.: The strength and radial profile of the coronal magnetic field from the standoff distance of a coronal mass ejection-driven shock, Astrophys. J. Lett., 736, L17, https://doi.org/10.1088/2041-8205/736/1/L17, 2011. a, b
Gopalswamy, N., Lara, A., Kaiser, M. L., and Bougeret, J. L.: Near-Sun and near-Earth manifestations of solar eruptions, J. Geophys. Res., 106, 25261–25278, https://doi.org/10.1029/2000JA004025, 2001. a, b
Gopalswamy, N., Nitta, N., Akiyama, S., Mäkelä, P., and Yashiro, S.: Coronal magnetic field measurement from euv images made by the solar dynamics observatory, Astrophys. J., 744, 72, https://doi.org/10.1088/0004-637X/744/1/72, 2011. a
Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A., Joshi, N., Chandra, R., Manoharan, P., Mahalakshmi, K., Dwivedi, V., Jain, R., Awasthi, A., Nitta, N., Aschwanden, M., and Choudhary, D.: Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections, Adv. Space Res., 51, 1981–1989, https://doi.org/10.1016/j.asr.2013.01.006, 2013. a, b
Gopalswamy, N., Yashiro, S., Mäkelä, P., Xie, H., Akiyama, S., and Monstein, C.: Extreme Kinematics of the 2017 September 10 Solar Eruption and the Spectral Characteristics of the Associated Energetic Particles, Astrophys. J., 863, L39, https://doi.org/10.3847/2041-8213/aad86c, 2018. a
Gosling, J. T. and Pizzo, V. J.: Formation and Evolution of Corotating Interaction Regions and Their Three Dimensional Structure, in: Corotating Interaction Regions. Series: Space Sciences Series of ISSI, edited by: Balogh, A., Gosling, J. T., Jokipii, J. R., Kallenbach, R., and Kunow, H., vol. 7, 21–52, https://doi.org/10.1007/978-94-017-1179-1_3, 1999. a
Grechnev, V. V., Afanasyev, A. N., Uralov, A. M., Chertok, I. M., Eselevich, M. V., Eselevich, V. G., Rudenko, G. V., and Kubo, Y.: Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient, Sol. Phys., 273, 461–477, https://doi.org/10.1007/s11207-011-9781-y, 2011. a
Habarulema, J. B., Tshisaphungo, M., Katamzi-Joseph, Z. T., Matamba, T. M., and Nndanganeni, R.: Ionospheric Response to the M- and X-Class Solar Flares of 28 October 2021 Over the African Sector, Space Weather, 20, e2022SW003104, https://doi.org/10.1029/2022SW003104, 2022. a
Habyarimana, V., Habarulema, J. B., Okoh, D., Dugassa, T., and Uwamahoro, J. C.: Single station modelling of ionospheric irregularities using artificial neural networks, Astrophys. Space Sci., 368, 105, https://doi.org/10.1007/s10509-023-04261-8, 2023. a
Hapgood, M., Liu, H., and Lugaz, N.: SpaceX–Sailing Close to the Space Weather?, Space Weather, 20, e2022SW003074, https://doi.org/10.1029/2022SW003074, 2022. a
Hilchenbach, M., Sierks, H., Klecker, B., Bamert, K., and Kallenbach, R.: Velocity Dispersion Of Energetic Particles Observed By SOHO/CELIAS/STOF, in: Solar Wind Ten, edited by Velli, M., Bruno, R., Malara, F., and Bucci, B., vol. 679, American Institute of Physics Conference Series, 106–109, https://doi.org/10.1063/1.1618552, 2003. a
Kallunki, J., McKay, D., and Tornikoski, M.: First Type III Solar Radio Bursts of Solar Cycle 25, Sol. Phys., 296, 57, https://doi.org/10.1007/s11207-021-01790-9, 2021. a
Kataoka, R., Shiota, D., Fujiwara, H., Jin, H., Tao, C., Shinagawa, H., and Miyoshi, Y.: Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022, J. Space Weather Spac., 12, 41, https://doi.org/10.1051/swsc/2022034, 2022. a
Kavanagh, A. J., Marple, S. R., Honary, F., McCrea, I. W., and Senior, A.: On solar protons and polar cap absorption: constraints on an empirical relationship, Ann. Geophys., 22, 1133–1147, https://doi.org/10.5194/angeo-22-1133-2004, 2004. a
Kim, R.-S., Gopalswamy, N., Moon, Y.-J., Cho, K.-S., and Yashiro, S.: Magnetic field strength in the upper solar corona using white-light shock structures surrounding coronal mass ejections, Astrophys. J., 746, 118, https://doi.org/10.1088/0004-637x/746/2/118, 2012. a, b, c, d
Kishore, P., Ramesh, R., Hariharan, K., Kathiravan, C., and Gopalswamy, N.: Constraining the solar coronal magnetic field strength using split-band type ii radio burst observations, 832, 59, https://doi.org/10.3847/0004-637X/832/1/59, 2016. a
Klein, K.-L., Musset, S., Vilmer, N., Briand, C., Krucker, S., Francesco Battaglia, A., Dresing, N., Palmroos, C., and Gary, D. E.: The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona, A&A, 663, A173, https://doi.org/10.1051/0004-6361/202243903, 2022. a
Kouloumvakos, A., Rouillard, A., Warmuth, A., Magdalenic, J., Jebaraj, I. C., Mann, G., Vainio, R., and Monstein, C.: Coronal Conditions for the Occurrence of Type II Radio Bursts, Astrophys. J., 913, 99, https://doi.org/10.3847/1538-4357/abf435, 2021. a
Koval, A., Stanislavsky, A., Karlický, M., Wang, B., Yerin, S., Konovalenko, A., and Bárta, M.: Morphology of Solar Type II Bursts Caused by Shock Propagation through Turbulent and Inhomogeneous Coronal Plasma, Astrophys. J., 952, 51, https://doi.org/10.3847/1538-4357/acdbcc, 2023. a, b
Kumari, A., Ramesh, R., Kathiravan, C., and Wang, T. J.: Addendum to: Strength of the Solar Coronal Magnetic Field – A Comparison of Independent Estimates Using Contemporaneous Radio and White-Light Observations, Sol. Phys., 292, 177, https://doi.org/10.1007/s11207-017-1203-3, 2017. a, b
Kumari, A., Ramesh, R., Kathiravan, C., Wang, T. J., and Gopalswamy, N.: Direct Estimates of the Solar Coronal Magnetic Field Using Contemporaneous Extreme-ultraviolet, Radio, and White-light Observations, Astrophys. J., 881, 24, https://doi.org/10.3847/1538-4357/ab2adf, 2019. a
Kumari, A., Morosan, D. E., and Kilpua, E. K. J.: On the Occurrence of Type IV Solar Radio Bursts in Solar Cycle 24 and Their Association with Coronal Mass Ejections, Astrophys. J., 906, 79, https://doi.org/10.3847/1538-4357/abc878, 2021. a
Lata Soni, S., Ebenezer, E., and lal Yadav, M.: Multi-wavelength analysis of CME-driven shock and Type II solar radio burst band-splitting, Astrophys. Space Sci., 366, 31, https://doi.org/10.1007/s10509-021-03933-7, 2021. a, b
Leblanc, Y., Dulk, G. A., and Bougeret, J.-L.: Tracing the Electron Density from the Corona to 1au, Sol. Phys., 183, 165–180, https://doi.org/10.1023/A:1005049730506, 1998. a
Liu, J., Qian, L., Maute, A., Wang, W., Richmond, A. D., Chen, J., Lei, J., Zhang, Q., and Xing, Z.: Electrodynamical Coupling of the Geospace System During Solar Flares, J. Geophys. Res.-Space, 126, e2020JA028569, https://doi.org/10.1029/2020JA028569, 2021. a
Liu, J., Wang, W., Qian, L., Lotko, W., Burns, A. G., Pham, K., Lu, G., Solomon, S. C., Liu, L., Wan, W., Anderson, B. J., Coster, A., and Wilder, F.: Solar flare effects in the Earth's magnetosphere, Nat. Phys., 17, 807–812, https://doi.org/10.1038/s41567-021-01203-5, 2021. a
Liu, J. Y., Lin, C. H., Tsai, H. F., and Liou, Y. A.: Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation, J. Geophys. Res.-Space, 109, A01307, https://doi.org/10.1029/2003JA009931, 2004. a
Liu, J. Y., Lin, C. H., Chen, Y. I., Lin, Y. C., Fang, T. W., Chen, C. H., Chen, Y. C., and Hwang, J. J.: Solar flare signatures of the ionospheric GPS total electron content, J. Geophys. Res.-Space, 111, A05308, https://doi.org/10.1029/2005JA011306, 2006. a
Liu, X., Yuan, Y., Tan, B., and Li, M.: Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China, ISPRS Int. J. Geo-Inf., 5, 237, https://doi.org/10.3390/ijgi5120237, 2016. a, b
Liu, Y., Li, Z., Fu, L., Wang, J., Radicella, S. M., and Zhang, C.: Analyzing Ionosphere TEC and ROTI Responses on 2010 August High Speed Solar Winds, IEEE Access, 7, 29788–29804, https://doi.org/10.1109/ACCESS.2019.2897793, 2019. a, b, c
Maguire, C. A., Carley, E. P., McCauley, J., and Gallagher, P. T.: Evolution of the Alfvén Mach number associated with a coronal mass ejection shock, A & A, 633, A56, https://doi.org/10.1051/0004-6361/201936449, 2020. a, b, c, d
Maia, D., Pick, M., Vourlidas, A., and Howard, R.: Development of Coronal Mass Ejections: Radio Shock Signatures, Astrophys. J., 528, L49–L51, https://doi.org/10.1086/312421, 2000. a
Mann, G., Vocks, C., Warmuth, A., Magdalenic, J., Bisi, M., Carley, E., Dabrowski, B., Gallagher, P., Krankowski, A., Matyjasiak, B., Rotkaehl, H., and Zucca, P.: Excitation of Langmuir waves at shocks and solar type II radio bursts, A&A, 660, A71, https://doi.org/10.1051/0004-6361/202142201, 2022. a, b
McDonald, F. B., Teegarden, B. J., Trainor, J. H., von Rosenvinge, T. T., and Webber, W. R.: The interplanetary acceleration of energetic nucleons, Astrophys. J. Let., 203, L149–L154, https://doi.org/10.1086/182040, 1976. a, b
Minta, F. N., Nozawa, S., Kamen, K., Elsaid, A., and Ayman, A.: Assessing the spectral characteristics of band splitting type II radio bursts observed by CALLISTO spectrometers, arXiv [preprint], https://doi.org/10.48550/arXiv.2301.13839, 2023. a, b
Mitra, A. P.: Polar Cap Absorption Events, Springer Netherlands, Dordrecht, 252–278, ISBN 978-94-010-2231-6, https://doi.org/10.1007/978-94-010-2231-6_11, 1974. a
NASA: Coordinated Data Analysis Web (CDAWeb), https://cdaweb.gsfc.nasa.gov/ (last access: 14 February 2024), 2024. a
Ndacyayisenga, T., Uwamahoro, J., Sasikumar Raja, K., and Monstein, C.: A statistical study of solar radio Type III bursts and space weather implication, Adv. Space Res., 67, 1425–1435, https://doi.org/10.1016/j.asr.2020.11.022, 2021. a, b
Nedal, M., Mahrous, A., and Youssef, M.: Predicting the arrival time of CME associated with type-II radio burst using neural networks technique, Astrophys. Space Sci., 364, 161, https://doi.org/10.1007/s10509-019-3651-8, 2019. a
Newkirk, Gordon, J.: Structure of the Solar Corona, Annu. Rev. Astron. Astr., 5, 213, https://doi.org/10.1146/annurev.aa.05.090167.001241, 1967. a
Nindos, A.: Incoherent Solar Radio Emission, Frontiers in Astronomy and Space Sciences, 7, 57, https://doi.org/10.3389/fspas.2020.00057, 2020. a
Nindos, A., Aurass, H., Klein, K. L., and Trottet, G.: Radio Emission of Flares and Coronal Mass Ejections. Invited Review, Sol. Phys., 253, 3–41, https://doi.org/10.1007/s11207-008-9258-9, 2008. a
Okoh, D.: Programs to Compute ROT and ROTI, MATLAB Central File Exchange [code], https://www.mathworks.com/matlabcentral/fileexchange/129239-programs-to-compute-rot-and-roti (last access: 4 July 2024), 2024. a
Oljira, A.: A study of Solar Flares and Geomagnetic Storms Impact on Total Electron Content Over High-Latitude Region During July–November 2021: The Case of Tromso Station, Adv. Space Res., 72, 3868–3881, https://doi.org/10.1016/j.asr.2023.06.051, 2023. a
Oran, R., Weiss, B. P., De Soria Santacruz-Pich, M., Jun, I., Lawrence, D. J., Polanskey, C. A., Ratliff, J. M., Raymond, C. A., Ream, J. B., Russell, C. T., Shprits, Y. Y., Zuber, M. T., and Elkins-Tanton, L. T.: Maximum Energies of Trapped Particles Around Magnetized Planets and Small Bodies, Geophys. Res. Lett., 49, e2021GL097014, https://doi.org/10.1029/2021GL097014, 2022. a
Payne-Scott, R., Yabsley, D. E., and Bolton, J. G.: Relative Times of Arrival of Bursts of Solar Noise on Different Radio Frequencies, Nature, 160, 256–257, https://doi.org/10.1038/160256b0, 1947. a
Perrone, L., Alfonsi, L., Romano, V., and de Franceschi, G.: Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica, Ann. Geophys., 22, 1633–1648, https://doi.org/10.5194/angeo-22-1633-2004, 2004. a
Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M.: Monitoring of global ionospheric irregularities using the Worldwide GPS Network, Geophys. Res. Lett., 24, 2283–2286, https://doi.org/10.1029/97GL02273, 1997. a, b, c, d
Pick, M., Forbes, T. G., Mann, G., Cane, H. V., Chen, J., Ciaravella, A., Cremades, H., Howard, R. A., Hudson, H. S., Klassen, A., Klein, K. L., Lee, M. A., Linker, J. A., Maia, D., Mikic, Z., Raymond, J. C., Reiner, M. J., Simnett, G. M., Srivastava, N., Tripathi, D., Vainio, R., Vourlidas, A., Zhang, J., Zurbuchen, T. H., Sheeley, N. R., and Marqué, C.: Multi-Wavelength Observations of CMEs and Associated Phenomena. Report of Working Group F, Space Sci. Rev., 123, 341–382, https://doi.org/10.1007/s11214-006-9021-1, 2006. a
Ramesh, R., Kathiravan, C., and Sastry, C. V.: Estimation of magnetic field in the solar coronal streamers through low frequency radio observations, Astrophys. J., 711, 1029–1032, https://doi.org/10.1088/0004-637x/711/2/1029, 2010. a, b
Ranta, H., Ranta, A., Yousef, S. M., Burns, J., and Stauning, P.: D-region observations of polar cap absorption events during the EISCAT operation in 1981–1989, J. Atmos. Terr. Phys., 55, 751–766, https://doi.org/10.1016/0021-9169(93)90018-T, 1993. a
Reid, H. A. S. and Ratcliffe, H.: A review of solar type III radio bursts, Res. Astron. Astrophys., 14, 773–804, https://doi.org/10.1088/1674-4527/14/7/003, 2014. a
Richardson, I. G., Barbier, L. M., Reames, D. V., and von Rosenvinge, T. T.: Corotating MeV/amu ion enhancements at ≤1 AU from 1978 to 1986, J. Geophys. Res.-Space, 98, 13–32, https://doi.org/10.1029/92JA01837, 1993. a, b
Saito, K., Poland, A. I., and Munro, R. H.: A study of the background corona near solar minimum, Sol. Phys., 55, 121–134, https://doi.org/10.1007/BF00150879, 1977. a
Salmane, H., Weber, R., Abed-Meraim, K., Klein, K.-L., and Bonnin, X.: A method for the automated detection of solar radio bursts in dynamic spectra, J. Space Weather Spac., 8, A43, https://doi.org/10.1051/swsc/2018028, 2018. a
Sarp, V., Kilcik, A., Yurchyshyn, V., Rozelot, J. P., and Ozguc, A.: Prediction of solar cycle 25: a non-linear approach, Mon. Not. R. Astron. Soc., 481, 2981–2985, https://doi.org/10.1093/mnras/sty2470, 2018. a
Sasikumar Raja, K., Ramesh, R., Hariharan, K., Kathiravan, C., and Wang, T. J.: An Estimate of the Magnetic Field Strength Associated with a Solar Coronal Mass Ejection from Low Frequency Radio Observations, Astrophys. J., 796, 56, https://doi.org/10.1088/0004-637X/796/1/56, 2014. a
Sasikumar Raja, K., Janardhan, P., Bisoi, S. K., Ingale, M., Subramanian, P., Fujiki, K., and Maksimovic, M.: Global Solar Magnetic Field and Interplanetary Scintillations During the Past Four Solar Cycles, Sol. Phys., 294, 123, https://doi.org/10.1007/s11207-019-1514-7, 2019. a
Sasikumar Raja, K., Subramanian, P., Ingale, M., Ramesh, R., and Maksimovic, M.: Turbulent Proton Heating Rate in the Solar Wind from 5-45 R⊙, Astrophys. J., 914, 137, https://doi.org/10.3847/1538-4357/abfcd1, 2021. a
Sasikumar Raja, K., Maksimovic, M., Kontar, E. P., Bonnin, X., Zarka, P., Lamy, L., Reid, H., Vilmer, N., Lecacheux, A., Krupar, V., Cecconi, B., Nora, L., and Denis, L.: Spectral Analysis of Solar Radio Type III Bursts from 20 kHz to 410 MHz, Astrophys. J., 924, 58, https://doi.org/10.3847/1538-4357/ac34ed, 2022a. a
Sasikumar Raja, K., Venkata, S., Singh, J., and Raghavendra Prasad, B.: Solar coronal magnetic fields and sensitivity requirements for spectropolarimetry channel of VELC onboard Aditya-L1, Adv. Space Rese., 69, 814–822, https://doi.org/10.1016/j.asr.2021.10.053, 2022b. a
Seemala, G. K. and Valladares, C. E.: Statistics of total electron content depletions observed over the South American continent for the year 2008, Radio Sci., 46, RS5019, https://doi.org/10.1029/2011RS004722, 2011. a
Shea, M. A. and Smart, D. F.: Solar proton event patterns: the rising portion of five solar cycles, Adv. Space Res., 29, 325–330, https://doi.org/10.1016/S0273-1177(01)00592-0, 2002. a
Smerd, S. F., Sheridan, K. V., and Stewart, R. T.: On Split-Band Structure in Type II Radio Bursts from the Sun (presented by S. F. Smerd), in: Coronal Disturbances, edited by: Newkirk, G. A., vol. 57, p. 389, https://doi.org/10.1007/978-94-010-2257-6_47, 1974. a
Smerd, S. F., Sheridan, K. V., and Stewart, R. T.: Split-Band Structure in Type II Radio Bursts from the Sun, Astrophys. Lett., 16, 23–28, 1975. a
Solar Monitor: https://solarmonitor.org/ (last access: 19 February 2024), 2024. a
Su, W., Li, T. M., Cheng, X., Feng, L., Zhang, P. J., Chen, P. F., Ding, M. D., Chen, L. J., Guo, Y., Wang, Y., Li, D., and Zhang, L. Y.: Quantifying the Magnetic Structure of a Coronal Shock Producing a Type II Radio Burst, Astrophys. J., 929, 175, https://doi.org/10.3847/1538-4357/ac5fac, 2022. a
Tan, B.: Multi-timescale solar cycles and the possible implications, Astrophys. Space Sci., 332, 65–72, https://doi.org/10.1007/s10509-010-0496-6, 2011. a
Tan, B., Chen, N., Yang, Y.-H., Tan, C., Masuda, S., Chen, X., and Misawa, H.: Solar Fast-drifting Radio Bursts in an X1.3 Flare on 2014 April 25, Astrophys. J., 885, 90, https://doi.org/10.3847/1538-4357/ab4718, 2019. a, b
Temmer, M., Veronig, A. M., Kontar, E. P., Krucker, S., and Vršnak, B.: Combined STEREO/RHESSI Study of Coronal Mass Ejections Acceleration and Particle Acceleration in Solar Flares, Astrophys. J., 712, 1410–1420, https://doi.org/10.1088/0004-637x/712/2/1410, 2010. a
Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Lakhina, G. S., Li, G., and Zank, G. P.: A brief review of “solar flare effects” on the ionosphere, Radio Sci., 44, RS0A17, https://doi.org/10.1029/2008RS004029, 2009. a, b, c
Umuhire, A. C., Gopalswamy, N., Uwamahoro, J., Akiyama, S., Yashiro, S., and Mäkelä, P.: Properties of High-Frequency Type II Radio Bursts and Their Relation to the Associated Coronal Mass Ejections, Sol. Phys., 296, 27, https://doi.org/10.1007/s11207-020-01743-8, 2021. a, b
Uwamahoro, J. C., Giday, N. M., Habarulema, J. B., Katamzi-Joseph, Z. T., and Seemala, G. K.: Reconstruction of Storm-Time Total Electron Content Using Ionospheric Tomography and Artificial Neural Networks: A Comparative Study Over the African Region, Radio Sci., 53, 1328–1345, https://doi.org/10.1029/2017RS006499, 2018. a
Van Hollebeke, M. A. I., McDonald, F. B., Trainor, J. H., and von Rosenvinge, T. T.: The radial variation of corotating energetic particle streams in the inner and outer solar system, J. Geophys. Res.-Space, 83, 4723–4731, https://doi.org/10.1029/JA083iA10p04723, 1978. a, b
Vasanth, V., Umapathy, S., Vršnak, B., and Anna Lakshmi, M.: Characteristics of Type-II Radio Bursts Associated with Flares and CMEs, Sol. Phys., 273, 143–162, https://doi.org/10.1007/s11207-011-9854-y, 2011. a
Vasanth, V., Umapathy, S., Vršnak, B., Žic, T., and Prakash, O.: Investigation of the Coronal Magnetic Field Using a Type II Solar Radio Burst, Sol. Phys., 289, 251–261, https://doi.org/10.1007/s11207-013-0318-4, 2014. a
Vemareddy, P., Démoulin, P., Sasikumar Raja, K., Zhang, J., Gopalswamy, N., and Vasantharaju, N.: Eruption of the EUV Hot Channel from the Solar Limb and Associated Moving Type IV Radio Burst, Astrophys. J., 927, 108, https://doi.org/10.3847/1538-4357/ac4dfe, 2022. a
Vourlidas, A., Carley, E. P., and Vilmer, N.: Radio Observations of Coronal Mass Ejections: Space Weather Aspects, Frontiers in Astronomy and Space Sciences, 7, 43, https://doi.org/10.3389/fspas.2020.00043, 2020. a, b
Vršnak, B., Aurass, H., Magdalenić, J., and Gopalswamy, N.: Band-splitting of coronal and interplanetary type II bursts. I. Basic properties, A & A, 377, 321–329, https://doi.org/10.1051/0004-6361:20011067, 2001. a, b
Wan, W., Yuan, H., Liu, L., and Ning, B.: The sudden increase in ionospheric total electron content caused by the very intense solar flare on july 14, 2000, Sci. China Ser. A, 45, 142–147, https://doi.org/10.1007/BF02889695, 2002. a
Wild, J. P. and McCready, L. L.: Observations of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. I. The Apparatus and Spectral Types of Solar Burst Observed, Aust. J. Sci. Res. Ser. A, 3, 387, https://doi.org/10.1071/CH9500387, 1950. a
Wild, J. P., Smerd, S. F., and Weiss, A. A.: Solar Bursts, Ann. Rev. Astron. Astrophys., 1, 291, https://doi.org/10.1146/annurev.aa.01.090163.001451, 1963. a
Zucca, P., Morosan, D. E., Rouillard, A. P., Fallows, R., Gallagher, P. T., Magdalenic, J., Klein, K. L., Mann, G., Vocks, C., Carley, E. P., Bisi, M. M., Kontar, E. P., Rothkaehl, H., Dabrowski, B., Krankowski, A., Anderson, J., Asgekar, A., Bell, M. E., Bentum, M. J., Best, P., Blaauw, R., Breitling, F., Broderick, J. W., Brouw, W. N., Brüggen, M., Butcher, H. R., Ciardi, B., de Geus, E., Deller, A., Duscha, S., Eislöffel, J., Garrett, M. A., Grießmeier, J. M., Gunst, A. W., Heald, G., Hoeft, M., Hörandel, J., Iacobelli, M., Juette, E., Karastergiou, A., van Leeuwen, J., McKay-Bukowski, D., Mulder, H., Munk, H., Nelles, A., Orru, E., Paas, H., Pandey, V. N., Pekal, R., Pizzo, R., Polatidis, A. G., Reich, W., Rowlinson, A., Schwarz, D. J., Shulevski, A., Sluman, J., Smirnov, O., Sobey, C., Soida, M., Thoudam, S., Toribio, M. C., Vermeulen, R., van Weeren, R. J., Wucknitz, O., and Zarka, P.: Shock location and CME 3D reconstruction of a solar type II radio burst with LOFAR, A & A, 615, A89, https://doi.org/10.1051/0004-6361/201732308, 2018. a
Short summary
This article reports the first observations of 32 type II bursts in cycle 25 from May 2021 to December 2022. The impacts of space weather on ionospheric total electron content (TEC) enhancement, as measured by the rate of change of TEC index (ROTI), are also studied. According to the current analysis, 19 of 32 type II bursts are connected with imminent space weather occurrences, such as radio blackouts and polar cap absorption events, indicating a high likelihood of space weather disturbance.
This article reports the first observations of 32 type II bursts in cycle 25 from May 2021 to...