Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-1-2024
https://doi.org/10.5194/angeo-42-1-2024
Regular paper
 | 
02 Feb 2024
Regular paper |  | 02 Feb 2024

High-time-resolution analysis of meridional tides in the upper mesosphere and lower thermosphere at mid-latitudes measured by the Falkland Islands SuperDARN radar

Gareth Chisham, Andrew J. Kavanagh, Neil Cobbett, Paul Breen, and Tim Barnes

Related authors

AMPERE polar cap boundaries
Angeline G. Burrell, Gareth Chisham, Stephen E. Milan, Liam Kilcommons, Yun-Ju Chen, Evan G. Thomas, and Brian Anderson
Ann. Geophys., 38, 481–490, https://doi.org/10.5194/angeo-38-481-2020,https://doi.org/10.5194/angeo-38-481-2020, 2020
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Waves and tides
Identifying gravity waves launched by the Hunga Tonga–Hunga Ha′apai volcanic eruption in mesosphere/lower-thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023,https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
A case study of a ducted gravity wave event over northern Germany using simultaneous airglow imaging and wind-field observations
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022,https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021,https://doi.org/10.5194/angeo-39-1-2021, 2021
Migrating tide climatologies measured by a high-latitude array of SuperDARN HF radars
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020,https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Diurnal mesospheric tidal winds observed simultaneously by meteor radars in Costa Rica (10° N, 86° W) and Brazil (7° S, 37° W)
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020,https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary

Cited articles

Azeem, I., Walterscheid, R. L., Crowley, G., Bishop, R. L., and Christensen, A. B.: Observations of the migrating semidiurnal and quaddiurnal tides from the RAIDS/NIRS instrument, J. Geophys. Res., 121, 4626–4637, 2016. a, b, c
Bristow, W. A., Yee, J.-H., Zhu, X., and Greenwald, R. A.: Simultaneous observations of the July 1996 2-day wave event using the Super Dual Auroral Radar Network and the High Resolution Doppler Imager, J. Geophys. Res., 104, 12715–12721, 1999. a, b, c
Ceplecha, Z., Borovicka, J., Elford, W. G., Revelle, P. O., Hawkes, R. L., Porubcan, V., and Simek, M.: Meteor phenomena and bodies, Space Sci. Rev., 84, 327–471, 1998. a
Chapman, S., and Lindzen, R.S.: Atmospheric tides: thermal and gravitational, Springer Science and Business Media, ISBN: 978-9401034012, 2011. a, b
Chisham, G.: Calibrating SuperDARN interferometers using meteor backscatter, Radio Sci., 53, 761–774, https://doi.org/10.1029/2017RS006492, 2018. a, b, c
Download
Short summary
Solar tides in the atmosphere are driven by solar heating on the dayside of the Earth. They result in large-scale periodic motion of the upper atmosphere. This motion can be measured by ground-based radars. This paper shows that making measurements at a higher time resolution than the standard operation provides a better description of higher-frequency tidal variations. This will improve the inputs to empirical atmospheric models and the benefits of data assimilation.