Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-465-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.Estimation and evaluation of hourly Meteorological Operational (MetOp) satellites' GPS receiver differential code biases (DCBs) with two different methods
Related authors
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Instruments and techniques
Inferring thermospheric composition from ionogram profiles: a calibration with the TIMED spacecraft
Ann. Geophys., 39, 309–319,
2021Cited articles
Abid, M. A., Mousa, A., Rabah, M., El mewafi, M., and Awad, A.: Temporal and spatial variation of differential code biases: A case study of regional network in Egypt, Alexandria Engineering Journal, 55, 1507–1514, https://doi.org/10.1016/j.aej.2016.03.004, 2016.
Arikan, F., Nayir, H., Sezen, U., and Arikan, O.: Estimation of Single Station Interfrequency Receiver Bias Using GPS-TEC, Radio Sci., 43, 762–770, https://doi.org/10.1029/2007rs003785, 2008.
Choi, B., Sohn D., and Lee, S. J.: Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016, Remote Sens., 11, 2657, https://doi.org/10.3390/rs11222657, 2019.
Choi, B. K. and Lee, S. J.: The influence of grounding on GPS receiver differential code biases, Adv. Space Res., 62, 457–463, https://doi.org/10.1016/j.asr.2018.04.033, 2018.
Conte, J. F., Azpilicueta, F., and Brunini, C.: Accuracy assessment of the GPS-TEC calibration constants by means of a simulation technique, J. Geodesy, 85, 707–714. https://doi.org/10.1007/s00190-011-0477-8, 2011.