Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-253-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-41-253-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Concerning the detection of electromagnetic knot structures in space plasmas using the wave telescope technique
Simon Toepfer
CORRESPONDING AUTHOR
Institut für Theoretische Physik,
Technische Universität Braunschweig, Braunschweig, Germany
Karl-Heinz Glassmeier
Institut für Geophysik und extraterrestrische Physik,
Technische Universität Braunschweig,
Braunschweig, Germany
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
Uwe Motschmann
Institut für Theoretische Physik,
Technische Universität Braunschweig, Braunschweig, Germany
Related authors
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024, https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Short summary
The magnetosheath is a transition layer surrounding the planetary magnetosphere. We develop an algorithm to compute the plasma flow velocity and magnetic field for a more general shape of magnetosheath using the concept of potential field and suitable coordinate transformation. Application to the empirical Earth magnetosheath region is shown in the paper. The developed algorithm is useful when interpreting the spacecraft data or simulation of the planetary magnetosheath region.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Simon Toepfer, Ida Oertel, Vanita Schiron, Yasuhito Narita, Karl-Heinz Glassmeier, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Ann. Geophys., 40, 91–105, https://doi.org/10.5194/angeo-40-91-2022, https://doi.org/10.5194/angeo-40-91-2022, 2022
Short summary
Short summary
Revealing the nature of Mercury’s internal magnetic field is one of the primary goals of the BepiColombo mission. Besides the parametrization of the magnetic field contributions, the application of a robust inversion method is of major importance. The present work provides an overview of the most commonly used inversion methods and shows that Capon’s method as well as the Tikhonov regularization enable a high-precision determination of Mercury’s internal magnetic field up to the fifth degree.
Simon Toepfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Geosci. Instrum. Method. Data Syst., 9, 471–481, https://doi.org/10.5194/gi-9-471-2020, https://doi.org/10.5194/gi-9-471-2020, 2020
Short summary
Short summary
The Capon method serves as a powerful and robust data analysis tool when working on various kinds of ill-posed inverse problems. Besides the analysis of waves, the method can be used in a generalized way to compare actual measurements with theoretical models, such as Mercury's magnetic field analysis. In view to the BepiColombo mission this work establishes a mathematical basis for the application of Capon's method to analyze Mercury's internal magnetic field in a robust and manageable way.
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024, https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Short summary
The magnetosheath is a transition layer surrounding the planetary magnetosphere. We develop an algorithm to compute the plasma flow velocity and magnetic field for a more general shape of magnetosheath using the concept of potential field and suitable coordinate transformation. Application to the empirical Earth magnetosheath region is shown in the paper. The developed algorithm is useful when interpreting the spacecraft data or simulation of the planetary magnetosheath region.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Simon Toepfer, Ida Oertel, Vanita Schiron, Yasuhito Narita, Karl-Heinz Glassmeier, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Ann. Geophys., 40, 91–105, https://doi.org/10.5194/angeo-40-91-2022, https://doi.org/10.5194/angeo-40-91-2022, 2022
Short summary
Short summary
Revealing the nature of Mercury’s internal magnetic field is one of the primary goals of the BepiColombo mission. Besides the parametrization of the magnetic field contributions, the application of a robust inversion method is of major importance. The present work provides an overview of the most commonly used inversion methods and shows that Capon’s method as well as the Tikhonov regularization enable a high-precision determination of Mercury’s internal magnetic field up to the fifth degree.
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 39, 165–170, https://doi.org/10.5194/angeo-39-165-2021, https://doi.org/10.5194/angeo-39-165-2021, 2021
Short summary
Short summary
Identification of a large-amplitude Alfvén wave decaying into a pair of
ion-acoustic and daughter Alfvén waves is one of the major goals in the
observational studies of space plasma nonlinearity.
Growth-rate maps
may serve as a useful tool for predictions of the wavevector spectrum of density
or magnetic field fluctuations in various scenarios for the
wave–wave coupling processes developing at different stages in
space plasma turbulence.
Simon Toepfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Geosci. Instrum. Method. Data Syst., 9, 471–481, https://doi.org/10.5194/gi-9-471-2020, https://doi.org/10.5194/gi-9-471-2020, 2020
Short summary
Short summary
The Capon method serves as a powerful and robust data analysis tool when working on various kinds of ill-posed inverse problems. Besides the analysis of waves, the method can be used in a generalized way to compare actual measurements with theoretical models, such as Mercury's magnetic field analysis. In view to the BepiColombo mission this work establishes a mathematical basis for the application of Capon's method to analyze Mercury's internal magnetic field in a robust and manageable way.
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 37, 835–842, https://doi.org/10.5194/angeo-37-835-2019, https://doi.org/10.5194/angeo-37-835-2019, 2019
Short summary
Short summary
Here we present a scenario that the decay of a field-aligned Alfvén wave can occur simultaneously at various angles to the mean magnetic field, generating a number of second-order fluctuations or waves (after the pump wave as the first-order fluctuation). We refer to the simultaneous decay as
multi-channel couplingsfollowing the notion in scattering theory. Our goal is to study the hypothesis of the multi-channel coupling by running a three-dimensional hybrid plasma simulation.
Johannes Z. D. Mieth, Dennis Frühauff, and Karl-Heinz Glassmeier
Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, https://doi.org/10.5194/angeo-37-163-2019, 2019
Short summary
Short summary
The magnetopause (MP) is the primary interaction region between solar wind and the magnetic field of planet Earth and understanding of its behaviour also helps to better understand space weather. One famous model of the MP is the Shue et al. model, designed for the dayside and near-Earth situation. We take data of the ARTEMIS mission orbiting the moon and compare the MP position and shape to the model. We find differences in the location prediction but good agreement for the MP normal direction.
Yasuhito Narita and Uwe Motschmann
Ann. Geophys., 36, 1537–1543, https://doi.org/10.5194/angeo-36-1537-2018, https://doi.org/10.5194/angeo-36-1537-2018, 2018
Short summary
Short summary
Venus has no intrinsic magnetic field. On the other hand, we discover that an interplanetary magnetic field may nevertheless penetrate the planetary ionosphere by the diffusion process and reach the planetary surface when the solar wind condition remains for a sufficiently long time, between 12 and 54 h, depending on the condition of ionosphere.
Y. Narita, H. Comişel, and U. Motschmann
Ann. Geophys., 34, 591–593, https://doi.org/10.5194/angeo-34-591-2016, https://doi.org/10.5194/angeo-34-591-2016, 2016
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Experimental and mathematical techniques
The m-dimensional spatial Nyquist limit using the wave telescope for larger numbers of spacecraft
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Cited articles
Capon, J.: High resolution frequency-wavenumber spectrum analysis,
Proc. IEEE, 57, 1408–1418, https://doi.org/10.1109/PROC.1969.7278, 1969.
Constantinescu, O. D., Glassmeier, K.-H., Motschmann, U., Treumann, R. A., Fornaçon, K.-H., and Fränz, M.: Plasma wave source location using CLUSTER as a spherical wave telescope, J. Geophys. Res., 111, A09221, https://doi.org/10.1029/2005JA011550, 2006. a
Gauss, C. F.: Allgemeine Theorie des Erdmagnetismus: Resultate aus den
Beobachtungen des magnetischen Vereins im Jahre 1838, edited by:
Gauss, C. F. and Weber, W., 1–57, Weidmannsche Buchhandlung, Leipzig,
1839. a
Glassmeier, K.-H. and Tsurutani, B. T.: Carl Friedrich Gauss – General Theory of Terrestrial Magnetism – a revised translation of the German text, Hist. Geo Space. Sci., 5, 11–62, https://doi.org/10.5194/hgss-5-11-2014, 2014. a
Glassmeier, K.-H., Othmer, C., Cramm, R., Stellmacher, M., and Engebretson, M.: Magnetospheric field line resonances: A comparative planetology approach, Surv. Geophys., 20, 61–109, https://doi.org/10.1023/A:1006659717963, 1999. a
Glassmeier, K.-H., Motschmann, U., Dunlop, M., Balogh, A., Acuña, M. H., Carr, C., Musmann, G., Fornaçon, K.-H., Schweda, K., Vogt, J., Georgescu, E., and Buchert, S.: Cluster as a wave telescope – first results from the fluxgate magnetometer, Ann. Geophys., 19, 1439–1447, https://doi.org/10.5194/angeo-19-1439-2001, 2001. a
Harris, E. G.: On a plasma sheath separating regions of oppositely
directed magnetic fields, Nuovo Cim. 23, 115–121, https://doi.org/10.1007/BF02733547, 1962. a
Haykin, S.: Adaptive Filter Theory, 5th Edn., International edition, Pearson, ISBN 10: 0-273-76408-X, 2014. a
Klein, K. and Spence, H. and the HelioSwarm Science Team: HelioSwarm: Leveraging Multi-Point, Multi-Scale Spacecraft Observations to Characterize Turbulence, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6812, https://doi.org/10.5194/egusphere-egu21-6812, 2021. a
Motschmann, U., Woodward, T. I., Glassmeier, K.-H.,
Southwood, D. J., and Pinçon, J.-L.:
Wavelength and direction filtering by magnetic measurements
at satellite arrays: Generalized minimum variance analysis,
J. Geophys. Res., 101, 4961–4966, https://doi.org/10.1029/95JA03471, 1996. a, b, c, d, e, f
Narita, Y.:
A note on Capon's minimum variance projection
for multi-spacecraft data analysis,
Front. Phys., 7, 8, https://doi.org/10.3398/fphy.2019.00008, 2019. a, b, c
Narita, Y., Glassmeier, K.-H., Schäfer, S., Motschmann, U., Sauer, K., Dandouras, I., Fornaçon, K. H., Georgescu, E., and Rème, H.: Dispersion analysis of ULF waves in the foreshock using cluster data and the wave telescope technique, Geophys. Res. Lett., 30, 1710, https://doi.org/10.1029/2003GL017432, 2003. a
Narita, Y., Kleindienst, G., and Glassmeier, K.-H.: Evaluation of magnetic helicity density in the wave number domain
using multi-point measurements in space, Ann. Geophys., 27, 3967–3976, https://doi.org/10.5194/angeo-27-3967-2009, 2009. a
Narita, Y., Nakamura, R., and Baumjohann, W.: Cluster as current sheet surveyor in the magnetotail, Ann. Geophys., 31, 1605–1610, https://doi.org/10.5194/angeo-31-1605-2013, 2013. a
Narita, Y., Glassmeier, K.-H., and Motschmann, U.: The wave telescope technique, J.
Geophys. Res., 127, e2021JA030165, https://doi.org/10.1029/2021JA030165, 2022. a, b, c
Plaschke, F., Glassmeier, K.-H., Constantinescu, O. D., Mann, I. R., Milling, D. K., Motschmann, U., and Rae, I. J.: Statistical analysis of ground based magnetic field measurements with the field line resonance detector, Ann. Geophys., 26, 3477–3489, https://doi.org/10.5194/angeo-26-3477-2008, 2008. a, b, c
Toepfer, S., Narita, Y., Heyner, D., and Motschmann, U.:
The Capon method for Mercury's magnetic field analysis,
Front. Phys., 8, 249, https://doi.org/10.3389/fphy.2020.00249, 2020. a, b
Toepfer, S., Narita, Y., Heyner, D., Kolhey, P., and Motschmann, U.: Mathematical foundation of Capon's method for planetary magnetic field analysis, Geosci. Instrum. Method. Data Syst., 9, 471–481, https://doi.org/10.5194/gi-9-471-2020, 2020. a, b, c
Toepfer, S., Narita, Y., Exner, W., Heyner, D., Kolhey, P., Glassmeier, K.-H., and Motschmann, U.: The Mie representation for Mercury’s magnetospheric currents, Earth Planet. Space, 73, 65, https://doi.org/10.1186/s40623-021-01536-8, 2021. a, b
Vernisse, Y., Riousset, J. A., Motschmann, U., and Glassmeier, K.-H.: Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvènic flow with southward IMF, Planet. Space Sci., 152, 18–30, https://doi.org/10.1016/j.pss.2018.01.010, 2018. a
Zhang, Y. C., Shen, C., Liu, Z. X., Rong, Z. J., Zhang, T. L., Marchaudon, A., Zhang, H., Duan, S. P., Ma, Y. H., Dunlop, M. W., Yang, Y. Y., Carr, C. M., and Dandouras, I.: Two different types of plasmoids in the plasma sheet: Cluster multisatellite analysis application, J. Geophys. Res., 118, 5437–5444, https://doi.org/10.1002/jgra.50542, 2013.
a, b
Zong, Q.-G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Vogiatzis, I., Glassmeier, K.-H., Korth, A., Daly, P. W., Balogh, A., and Reme, H.: Cluster observations of earthward flowing in the tail, Geophys. Res. Let., 31, L18803, https://doi.org/10.1029/2004GL020692, 2004. a
Short summary
The present study discusses the modeling and interpretation of magnetospheric structures via electromagnetic knots for the first time. The mathematical foundations of electromagnetic knots are presented, and the formalism is reformulated in terms of the classical wave telescope technique. The method is tested against synthetically generated magnetic field data describing a plasmoid as a two-dimensional magnetic ring structure.
The present study discusses the modeling and interpretation of magnetospheric structures via...