Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-253-2023
https://doi.org/10.5194/angeo-41-253-2023
Regular paper
 | 
31 May 2023
Regular paper |  | 31 May 2023

Concerning the detection of electromagnetic knot structures in space plasmas using the wave telescope technique

Simon Toepfer, Karl-Heinz Glassmeier, and Uwe Motschmann

Related authors

Scalar-potential mapping of the steady-state magnetosheath model
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024,https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
The m-dimensional spatial Nyquist limit using the wave telescope for larger numbers of spacecraft
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023,https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Magnetopause as conformal mapping
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023,https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Reconstruction of Mercury's internal magnetic field beyond the octupole
Simon Toepfer, Ida Oertel, Vanita Schiron, Yasuhito Narita, Karl-Heinz Glassmeier, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Ann. Geophys., 40, 91–105, https://doi.org/10.5194/angeo-40-91-2022,https://doi.org/10.5194/angeo-40-91-2022, 2022
Short summary
Mathematical foundation of Capon's method for planetary magnetic field analysis
Simon Toepfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Geosci. Instrum. Method. Data Syst., 9, 471–481, https://doi.org/10.5194/gi-9-471-2020,https://doi.org/10.5194/gi-9-471-2020, 2020
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Experimental and mathematical techniques
The m-dimensional spatial Nyquist limit using the wave telescope for larger numbers of spacecraft
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023,https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary

Cited articles

Cameron, R. P.: Monochromatic knots and other unusual electromagnetic disturbances: light localised in 3D, J. Phys. Commun., 2, 015024, https://doi.org/10.1088/2399-6528/aa9761, 2018. a, b, c, d, e, f, g, h, i, j, k
Capon, J.: High resolution frequency-wavenumber spectrum analysis, Proc. IEEE, 57, 1408–1418, https://doi.org/10.1109/PROC.1969.7278, 1969. 
Constantinescu, O. D., Glassmeier, K.-H., Motschmann, U., Treumann, R. A., Fornaçon, K.-H., and Fränz, M.: Plasma wave source location using CLUSTER as a spherical wave telescope, J. Geophys. Res., 111, A09221, https://doi.org/10.1029/2005JA011550, 2006. a
Gauss, C. F.: Allgemeine Theorie des Erdmagnetismus: Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, edited by: Gauss, C. F. and Weber, W., 1–57, Weidmannsche Buchhandlung, Leipzig, 1839. a
Glassmeier, K.-H. and Tsurutani, B. T.: Carl Friedrich Gauss – General Theory of Terrestrial Magnetism – a revised translation of the German text, Hist. Geo Space. Sci., 5, 11–62, https://doi.org/10.5194/hgss-5-11-2014, 2014. a
Download
Short summary
The present study discusses the modeling and interpretation of magnetospheric structures via electromagnetic knots for the first time. The mathematical foundations of electromagnetic knots are presented, and the formalism is reformulated in terms of the classical wave telescope technique. The method is tested against synthetically generated magnetic field data describing a plasmoid as a two-dimensional magnetic ring structure.