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Abstract. The wave telescope technique is broadly estab-
lished in the analysis of spacecraft data and serves as a bridge
between local measurements and the global picture of spa-
tial structures. The technique is originally based on plane
waves and has been extended to spherical waves, phase-
shifted waves and planetary magnetic field representation.
The goal of the present study is the extension of the wave
telescope technique using electromagnetic knot structures as
a basis. As the knots are an exact solution of Maxwell’s equa-
tions they open the door for a new modeling and interpreta-
tion of magnetospheric structures, such as plasmoids.

1 Introduction

The classification and mathematical modeling of spatial
structures are among the major missions of theoretical
physics. Our extraterrestrial space environment in particular
provides a diversity of spatial structures with different char-
acteristics. For example, oscillating structures can be clas-
sified into plane waves (e.g., MHD waves), spherical waves
generated at the bow shock, surface waves triggered by insta-
bilities at the magnetopause and phase-shifted waves caused
by field line resonances (Plaschke et al., 2008; Narita et al.,
2022). On the other hand, global planetary magnetic fields
can be interpreted in terms of a multi-pole series based on
spherical harmonics (Gauss, 1839; Glassmeier and Tsuru-
tani, 2014; Toepfer et al., 2020a, b, 2021). For the charac-
terization of such structures, empirical models, such as mag-
netospheric models or models based on a set of specific basis

functions spanning the solution space of differential equa-
tions, are required.

In general, any spatial structure can be expanded into a
set of mathematical basis functions, such as plane waves
or spherical harmonics. Plane waves are the simplest spa-
tial structures forming a basis for the representation of spa-
tial fields. The contribution of any plane wave with its char-
acteristic spatial scale to the total field is described by the
spectrum of the field. However, in the worst case, infinitely
many elements forming the basis have to be incorporated to
describe the structure, resulting in an infinite set of expan-
sion coefficients that have to be determined from the mea-
surements. In this case, it is desirable to choose a new rep-
resentation based on a new set of basis functions that are
well-adjusted to the symmetry of the structure with fewer un-
known parameters.

Electromagnetic knots, proposed by Cameron (2018), are
a special superposition of infinitely many plane waves,
forming such a new basis set for localized, divergence-free
structures, namely the electromagnetic ring and the elec-
tromagnetic globule. The geometry of these basis elements
is depicted in Fig. 1a and b. A variety of electromagnetic
field topologies can be constructed by spatially distributing
and superposing several rings and globules as illustrated in
Fig. 1c. The complexity of the emerging field geometries
prompts the naming electromagnetic knots (Cameron, 2018).

The electromagnetic ring and the electromagnetic globule
are an exact solution of Maxwell’s equations and provide a
new tool in the context of plasma physical and electrodynam-
ical modeling. Based on the elaboration of Cameron (2018),
the mathematical foundations of electromagnetic knots are
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254 S. Toepfer et al.: Electromagnetic knots

Figure 1. Vector representation of the electromagnetic ring (a), the electromagnetic globule (b) and spatially distributed, superposed glob-
ules (c) after Cameron (2018).

revisited in the present study. Within this context, the for-
malism is reformulated in terms of the classical wave tele-
scope technique (Motschmann et al., 1996). Additionally,
the applicability of describing and interpreting spatial struc-
tures in planetary magnetospheres via knots is discussed. The
wave telescope technique enables the classification of spa-
tial structures in planetary magnetospheres from a limited
number of satellite positions and has successfully been ap-
plied to several problems in space physics (Glassmeier et
al., 2001; Narita et al., 2003, 2009, 2013, 2022). Originally,
the method was based on a plane wave representation and
was later extended to spherical waves (Contantinescu et al.,
2006), phase-shifted waves (Plaschke et al., 2008) and plan-
etary magnetic fields (Narita, 2019; Toepfer et al., 2020a, b).
The goal of the present study is the extension of the variety of
spatial structures that can be analyzed from a limited set of
measurement positions by considering the electromagnetic
knots a new basis set for the wave telescope. The method
is tested against synthetically generated magnetic field data
describing a plasmoid as a two-dimensional magnetic ring
structure.

2 The classical wave telescope

Maxwell’s equations represent a set of coupled partial differ-
ential equations for the magnetic field B(x, t) and the elec-
tric field E(x, t). These equations can be transformed into a
set of algebraic equations via the Fourier transform. In the
following discussion we will focus on the magnetic field.

The measurement position x and the measured field
B(x, t) are known from a set of magnetometer measure-
ments. Due to the high temporal resolution of the mag-
netometer, the temporal Fourier transform can be applied
to the data, delivering the spectral amplitude B(x,ω)

(Motschmann et al., 1996). In general, this spectral ampli-
tude is a continuous function of ω. However, in the practical

application outstanding points of the spectrum, for example
sharp maxima, are of major interest. Thus, the data are eval-
uated at a peak, where ω = ω0, with the corresponding am-
plitude B(x,ω0). So far, the magnetic field can be written
as

B (x,ω0)=

∫
B̂0 (k,ω0) e

ik·x d3k, (1)

where B̂0(k,ω0) is the spectral amplitude of the magnetic
field with respect to the wave vector k. As the magnetic
field measurements are solely available at a limited number
of measurement points, the spatial Fourier transform is not
applicable. Thus, the spectral amplitudes B̂0(k,ω0) and the
corresponding wave vectors k are to be determined by the
data fitting procedure. Although a variety of inversion tech-
niques are available (Haykin, 2014, e.g.,), we will focus on
the wave telescope technique (Motschmann et al., 1996).

Suppose that the magnetic field vector B(x,ω0) is mea-
sured at N positions xi (i = 1, . . .,N ), summarized into
the 3N -dimensional vector B(ω0). Thus, the determination
of the spectral amplitude B̂0(k,ω0) results in an overde-
termined inversion problem. Following Motschmann et al.
(1996), Narita (2019) and Toepfer et al. (2020b), the mag-
netic field model can be rewritten as

B (ω0)=

∫
H(k) B̂0 (k,ω0)d

3k, (2)

where

H(k)=

Ieik·x1

...

Ieik·xN

 ∈ R3N×3 (3)

is the shape matrix and I ∈ R3×3 denotes the identity matrix.
The magnetic field measurements can be arranged into the
data covariance matrix

M= 〈B (ω0) ◦B (ω0)〉 ∈ R3N×3N ,
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where the angular brackets denote the statistical average of
the data. The spectrum of the wave can be estimated via

P(k)= tr
{[

H†M−1H
]−1

}
, (4)

where the dagger † denotes the Hermitian conjugate and
tr
{[

H†M−1H
]−1

}
is the trace of the matrix

[
H†M−1H

]−1.
The maximum values of P(k)may be interpreted as the spec-
trum of the field. If only a finite number of sharp peaks
emerges, the magnetic field may be interpreted as a super-
position of plane waves with discrete k values. As P(k)
is a nonlinear function of the vector k, the whole three-
dimensional k space needs to be scanned to identify the peaks
(Motschmann et al., 1996).

3 Electromagnetic knots

The classical wave telescope technique does not assume any
symmetry or relation between different k vectors of the spec-
trum. However, to be able to use electromagnetic knots as a
system of basis structures, the geometry of the k space needs
to be specialized. In this respect, the classical wave telescope
technique differs from its extension presented here. The fol-
lowing mathematical derivation of electromagnetic knots is
based on Cameron (2018).

3.1 Construction of the knots

For the specific evaluation of the integral in Eq. (1), spherical
coordinates (k,ϕ,θ) in the k space are introduced:

k = k

 sinθ cosϕ
sinθ sinϕ

cosθ

=: k ek, (5)

where the corresponding unit vectors are given by

ek = sinθ cosϕ ex + sinθ sinϕ ey + cosθ ez,

eϕ =−sinϕ ex + cosϕ ey,

eθ = cosθ cosϕ ex + cosθ sinϕ ey − sinθ ez.

The vectors ex , ey and ez denote the unit vectors of the
Cartesian coordinate system.

In this case, the magnetic field in Eq. (1) can be rewritten
as

B (x,ω0)=

∫
B̂0 (k,ω0) e

ik·x d3k

=

∫
B̂0 (k,θ,ϕ,ω0)e

ikek ·x d3k

=

∞∫
0

2π∫
0

π∫
0

B̂0 (k,θ,ϕ,ω0)e
ikek ·x k2 sinθ dθ dϕ dk

=

∞∫
0


2π∫

0

π∫
0

B̂0 (k,θ,ϕ,ω0)e
ikek ·x sinθ dθ dϕ

 k2 dk

=

∞∫
0

b̃ (k,ω0,x) k
2 dk, (6)

where

b̃ (k,ω0,x)=

2π∫
0

π∫
0

B̂0 (k,θ,ϕ,ω0)e
ikek ·x sinθ dθ dϕ (7)

is the spectral amount of the field corresponding to k.
Due to Maxwell’s equations, the magnetic field (as well

as the electric field in the absence of free charge carriers) is
solenoidal,

∂x ·B(x, t)= 0, (8)

such that

B̂0 (k,θ,ϕ,ω0) · ek = 0. (9)

To guarantee the solenoidality of the magnetic field, the
ansatz

B̂0 (k,θ,ϕ,ω0)= α (k,ϕ,θ,ω0) eϕ +β (k,ϕ,θ,ω0) eθ (10)

is chosen, which results in

b̃ (k,ω0,x)=

2π∫
0

π∫
0

[
α (k,ϕ,θ,ω0) eϕ

+β (k,ϕ,θ,ω0) eθ

]
eikek ·x sinθ dθ dϕ (11)

and

B (x,ω0)=

∞∫
0

2π∫
0

π∫
0

[
α (k,ϕ,θ,ω0) eϕ

+β (k,ϕ,θ,ω0) eθ

]
eikek ·x sinθ dθ dϕ k2 dk, (12)

where α(k,ϕ,θ,ω0) and β(k,ϕ,θ,ω0) are complex func-
tions of (k,ϕ,θ) and ω0. In the following this ansatz is spec-
ified by constraining the geometry of the three-dimensional
k space.
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Equation (11) represents the spectral amplitude of the
magnetic field for a fixed value of k. Thus, it is useful to
separate the angular dependency (ϕ,θ) of the spectral ampli-
tude from the k dependency by choosing the functions α and
β as

α (k,ϕ,θ,ω0)= α
′ (ϕ,θ,ω0)

B0

2π
K(k)
k2 , (13)

β (k,ϕ,θ,ω0)= β
′ (ϕ,θ,ω0)

B0

2π
K(k)
k2 , (14)

where K(k) is a function of k alone, α′(ϕ,θ,ω0) and
β ′(ϕ,θ,ω0) are complex functions of (ϕ,θ,ω0), and B0 is
a real constant.

In this respect, the spectral amplitude (Eq. 11) can be
rewritten as

b̃ (k,ω0,x)=
B0

2π

2π∫
0

π∫
0

[
α′(ϕ,θ)eϕ

+β ′(ϕ,θ)eθ

]
eikek ·x sinθ dθ dϕ

K(k)
k2 , (15)

where the functions α′(ϕ,θ) and β ′(ϕ,θ) weight the sum-
mation over the k space with respect to the angulars ϕ and θ .
Introducing the abbreviation

B̃ (k,ω0,x)=
B0

2π

2π∫
0

π∫
0

[
α′(ϕ,θ)eϕ

+β ′(ϕ,θ)eθ

]
eikek ·x sinθ dθ dϕ (16)

provides

b̃ (k,ω0,x)= B̃ (k,ω0,x)
K(k)
k2 (17)

such that

B (x,ω0)=

∞∫
0

B̃ (k,ω0,x) K(k)dk. (18)

In the following, the functions α′(ϕ,θ) and β ′(ϕ,θ) are spec-
ified to evaluate the spectral amplitude B̃(k,ω0,x) with re-
gard to electromagnetic knots (Cameron, 2018).

Each spectral amount (corresponding to a fixed k value)
of the field may be characterized by a superposition of plane
waves with the same amplitude propagating in every direc-
tion (independent of ϕ and θ ) such that

α′(ϕ,θ)= α′0 = const. ∈ C, β ′(ϕ,θ)= β ′0 = const. ∈ C. (19)

In this case, the spectral amplitude results in

B̃(k,ω0,x)=
B0

2π

2π∫
0

π∫
0

[
α′0 eϕ +β

′

0 eθ
]
eikek ·x sinθ dθ dϕ, (20)

representing a superposition of infinitely many plane waves
of the same amplitude with the spectrum

Sk =
{
k ∈ R3

|k2
x + k

2
y + k

2
z = k

2
}
. (21)

Therefore, the distribution in k space is completely charac-
terized by the value k.

Using the definitions of the unit vectors eϕ and eθ , the
magnetic field can be further expanded into the form

B̃(k,ω0,x)=
B0

2π

{
α′0

2π∫
0

π∫
0

[
− sinϕ ex

+ cosϕ ey

]
eikek ·x sinθ dθ dϕ

+β ′0

2π∫
0

π∫
0

[
cosθ cosϕ ex

+ cosθ sinϕ ey

− sinθ ez

]
eikek ·x sinθ dθ dϕ

}
=
B0

2π

{
ex

2π∫
0

π∫
0

(
−α′0 sinϕ

+β ′0 cosθ cosϕ
)
eikek ·x sinθ dθ dϕ

+ ey

2π∫
0

π∫
0

(
α′0 cosϕ

+β ′0 cosθ sinϕ
)
eikek ·x sinθ dθ dϕ

−β ′0 ez

2π∫
0

π∫
0

sin2θ eikek ·x dθ dϕ
}
. (22)

For the evaluation of the integrals in Eq. (22) it is useful to
introduce a cylindrical coordinate system (ρ,φ,z) in the po-
sition space:

x =

 ρ cosφ
ρ sinφ
z

= ρ eρ + zez, (23)

where ρ =
√
x2+ y2. The corresponding unit vectors are

given by

eρ = cosφ ex + sinφ ey,

eφ =−sinφ ex + cosφ ey,

ez = ez.

The scalar product of the k vector and the position vector
results in

ek · x = ρ cosφ cosϕ sinθ + ρ sinφ sinϕ sinθ + zcosθ

= ρ sinθ(cosφ cosϕ+ sinφ sinϕ)+ zcosθ. (24)
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Using x = ρ cosφ and y = ρ sinφ provides

ek · x = sinθ(x cosϕ+ y sinϕ)+ zcosθ. (25)

For the further evaluation of the integrals in each component
of Eq. (22), the abbreviations

η1(θ) := kx sinθ and η2(θ) := ky sinθ

are introduced. By means of these preparations, the ϕ inte-
gration can be solved analytically, delivering the Bessel func-
tions of the first kind:

Jn(x)=
1

2π

π∫
−π

ei(nτ−x sinτ) dτ.

The detailed evaluation of the integrals can be found in the
Appendix, resulting in

B̃ (k,ω0,x)= Re
{
B0
[
iα′0f eφ +β

′

0
(
g eρ +hez

)]}
(26)

and

B(x,ω0)=

∞∫
0

B̃ (k,ω0,x) K(k)dk

=

∞∫
0

Re
{
B0

[
iα′0f (x,k)eφ

+β ′0
(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk, (27)

where

f (x,k) :=

π∫
0

sinθ cos(kzcosθ)J1(kρ sinθ)dθ

g(x,k) := −

π∫
0

sinθ cosθ sin(kzcosθ)J1(kρ sinθ)dθ

and

h(x,k) := −

π∫
0

sin2θ cos(kzcosθ)J0(kρ sinθ)dθ.

The complex constants α′0 and β ′0 are the free parameters of
the magnetic field in Eq. (26) and can be chosen indepen-
dently of each other. The first part of the field,

B̃r (k,ω0,x) := Re
{
B0iα

′

0f eφ
}

or

Br (x,ω0)=

∞∫
0

Re
{
B0iα

′

0f eφ
}
K(k)dk, (28)

that corresponds to the expansion coefficient α′0 is called the
magnetic ring (see Fig. 1a). The second part,

B̃g(k,ω0,x) := Re
{
B0β

′

0
(
g eρ +hez

)}
or

Bg(x,ω0)=

∞∫
0

Re
{
B0β

′

0
(
g eρ +hez

)}
K(k)dk, (29)

corresponding to the expansion coefficient β ′0, is the mag-
netic globule (see Fig. 1b).

It should be noted that the electromagnetic knot struc-
tures do not form an entire set of mathematical basis func-
tions. Regarding the derivation presented here, electromag-
netic knots can be written as a superposition of infinitely
many plane waves, as plane waves represent an entire set of
basis functions. However, the inverse is not true. The func-
tions α′(ϕ,θ) and β ′(ϕ,θ) in Eq. (16) control the angular
dependency in the k space. By choosing α′(ϕ,θ)= const.
and β ′(ϕ,θ)= const., infinitely many plane waves propa-
gating in every direction contribute to the field. The result-
ing field structures are solenoidal and spatially localized.
Thus, the magnetic ring and the magnetic globule can be in-
terpreted as a set of basis functions for isotropically local-
ized, divergence-free structures. Choosing different shapes
for the functions α′(ϕ,θ) and β ′(ϕ,θ) enables the modeling
of structures beyond electromagnetic knots.

3.2 Electric field

The electric field and the magnetic field are connected via
Ampère’s law. Under the absence of ohmic currents, Am-
père’s law reduces to

∂x ×B(x, t)=
1
c2

ph
∂tE(x, t), (30)

where cph is the phase velocity. Fourier transformation pro-
vides

ik×B(x,ω)=−i
ω

c2
ph

E(x,ω). (31)

Using k = k ek yields

ek ×B(x,ω)=−
ω

kc2
ph

E(x,ω) (32)

such that

E(x,ω)=−
kc2

ph

ω
ek ×B(x,ω). (33)

Ampère’s law is valid for every k vector that contributes to
the spectrum of the field, yielding the ansatz

Ẽ(k,ω,x)=−
kc2

ph

ω
ek × B̃(k,ω,x). (34)
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Using

ek × eϕ =−eθ and ek × eθ = eϕ

delivers

Ẽ(k,ω,x)=−
kc2

ph

ω

B0

2π

2π∫
0

π∫
0

[
β ′0 eϕ

−α′0 eθ

]
eikek ·x sinθ dθ dϕ (35)

such that the real part can be expressed as

Ẽ(k,ω,x)=−
kc2

ph

ω
Re
{
B0

[
iβ ′0f (x,k)eφ

−α′0
(
g(x,k)eρ +h(x,k)ez

)]}
. (36)

Thus, the electric field is given by

E(x,ω0)=−

∞∫
0

kc2
ph

ω0
Re
{
B0

[
iβ ′0f (x,k)eφ

−α′0
(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk. (37)

3.3 Electric current density

When ohmic currents j(x, t) 6= 0 are present, Ampère’s law
can be written as

∂x ×B(x, t)= µ0j(x, t) (38)

under the assumption of stationarity or if the displacement
current is negligible. Again, Fourier transformation provides

ik×B(x,ω)= µ0j(x,ω) (39)

such that

j̃(k,ω,x)= i
k

µ0
ek × B̃(k,ω,x). (40)

In analogy to the electric field, the current density can be
calculated via

j(x,ω0)=

∞∫
0

k

µ0
Re
{
iB0

[
iβ ′0f (x,k)eφ

−α′0
(
g(x,k)eρ +h(x,k)ez

)]}
K(k)dk. (41)

Thus, the current density of the magnetic ring follows the
topology of a globule and vice versa.

3.4 Spatially distributed knot structures

Within the derivation of the knot structures, the magnetic ring
and the magnetic globule are defined with respect to the same
origin of the cylindrical coordinate system (ρ,φ,z). The re-
sulting structures are also known as (electro)magnetic distur-
bances of the first kind (Cameron, 2018). However, in gen-
eral the structures can be defined with respect to different
(local) coordinate systems, spanned by the local unit vec-
tors (eρq ,eφq ,ezq ), where q = 1, . . .,Q, with different ori-
gins Oq . The resulting structures,

B (x,ω0)=

∞∫
0

Re
{
B0

Q∑
q=1

[
iα′0qf

(
xq ,k

)
eφq

+β ′0q

(
g
(
xq ,k

)
eρq

+h(xq ,k)ezq

)]}
K(k)dk, (42)

where

x =Oq + xq ,xq = ρq eρq + zq ezq ,

are a superposition of Q translated and/or rotated
(electro)magnetic disturbances of the first kind (see Fig. 1c)
and are also called (electro)magnetic disturbances of the sec-
ond kind (Cameron, 2018). The field is characterized by 8Q
free parameters, i.e., the expansion coefficients α′0q and β ′0q ,
the origins Oq , and the orientation of the local coordinate
system that can be described, for example, via Euler angles
(Cameron, 2018).

3.5 Discussion of the knot structures

Within the derivation presented above, the spectral distribu-
tion of the field with respect to k is controlled by the func-
tion K(k). Electromagnetic knots, as originally described
by Cameron (2018), are superpositions of infinitely many
monochromatic plane waves, i.e., K(k)= δ(k− k0), with
the same amplitude, propagating in every direction with the
spectrum

Sk0 =

{
k ∈ R3

|k2
x + k

2
y + k

2
z = k

2
0

}
. (43)

In contrast to single plane waves, knots are localized struc-
tures, similar to wave packages. The localization of the struc-
tures results from the spatial distribution of the wave phases:

F(θ,ϕ) := ek · x = sinθ (x cosϕ+ y sinϕ)+ zcosθ. (44)

Thus, the knots are a superposition of plane waves with dif-
ferent phases F(θ,ϕ) at all points in space despite its cen-
tral point. At the origin of the structure (x = y = z= 0) the
phases of the waves are all equal: F(θ,ϕ)= 0, resulting in
a constructive interference with a maximum amplitude at the
central point. The scale size of the knot is determined by k0,
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Figure 2. Illustration of superposed, monochromatic plane wave
fronts (gray lines) with the wave length λ0 = 2π/k0. The knots are
localized in the origin of the red coordinate system spanned by the
vectors eρ , eφ and ez.

representing a set of infinitely many k vectors with the same
length. The superposition of the plane waves is schematically
illustrated in Fig. 2.

Equation (27) represents the magnetic field with respect
to the position vector x an the frequency ω0. However, the
spatial structure of the field can also directly be analyzed
from the measurement data B(x, t) evaluated at different
time steps t , and thus no Fourier transform with respect to
time is required.

4 Extension of the wave telescope

Following this short derivation and discussion of the electro-
magnetic knots, the knot model needs to be reformulated in
terms of the wave telescope technique to estimate the spec-
trum of the knots.

4.1 Reformulation of the model

After performing the temporal Fourier transform, the mag-
netic field (Eq. 27), measured at the position xi , i = 1, . . .,N ,
can be rewritten as

B (xi,ω0)=

∞∫
0

B̃(k,ω0,xi)K(k)dk

=

∞∫
0

Re
{

H(k)
(
B̂0(k,ω0)iα

′

0
B̂0(k,ω0)β

′

0

)}
K(k)dk, (45)

where

Hi(k)=

−f (xi,k)sinφ g(xi,k)cosφ
f (xi,k)cosφ g(xi,k)sinφ

0 h(xi,k)

 (46)

is the corresponding shape matrix of the position xi . Sum-
marizing the measurements into a 3N -dimensional vector
B(ω0), the magnetic field can be rearranged as

B(ω0)=

∞∫
0

Re
{

H(k)
(
B̂0(k,ω0)iα

′

0
B̂0(k,ω0)β

′

0

)}
K(k)dk, (47)

where

H(k) :=

H1(k)
...

HN (k)

 ∈ R3N×2. (48)

Again, the determination of the amplitudes α′0 B̂0(k,ω0) and
β ′0 B̂0(k,ω0) results in an overdetermined inversion problem.
In analogy to the classical wave telescope technique, the
spectrum of the ring can be estimated via

P(k)= tr
{[

H†M−1H
]−1

}
. (49)

Since P(k) is a nonlinear function of k, the whole k space
has to be scanned to estimate the spectrum of the field
(Motschmann et al., 1996).

Solely considering the magnetic ring (Eq. 28), the shape
matrix transfers onto the shape vector (Narita, 2019)

hr(k) := f (x,k)eφ =

 −f (x,k)sinφ
f (x,k)cosφ

0

 . (50)

In this case, the spectrum of the ring can be estimated via

Pr(k)=
1

h†
r (k)M−1hr(k)

. (51)

4.2 Application to plasmoids

For the first application of electromagnetic knots in the con-
text of magnetospheric structures, we consider the model-
ing of plasmoids via a magnetic ring (Zhang et al., 2013).
Plasmoids are a consequence of magnetic reconnection in the
far-tail region of a planetary magnetosphere triggered by the
Dungey cycle (McPherron, 1995, e.g.,). The structures are
characterized by a magnetic ring along the neutral sheet line
with a length scale of the order of the solar wind’s obstacle
(e.g., McPherron, 1995; Zong et al., 2004).
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Figure 3. Reconstructed spectrum Pr (k) resulting from different measurement positions (red dots) with respect to the origin of the plasmoid.
The length scale of the plasmoid is chosen to be k0 ≈ 4.19R−1

E .

We model the magnetic field in the tail region by super-
posing a stationary magnetic ring (α′0 =−i, Eq. 28),

Br(x,ω0 = 0)=

∞∫
0

Re
{
B0iα

′

0f (x,k)eφ
}
δ(k− k0)dk

= Re
{
B0iα

′

0f (x,k0)eφ
}
= B0 hr(k0), (52)

composed of monochromatic plane waves, representing the
plasmoid, with the field generated by the neutral sheet current

(Harris neutral sheet, Harris, 1962) such that

B(x)= Br (x,ω0 = 0)−Bs tanh
( y
L

)
ex

= B0 hr (x,k0)−Bs tanh
( y
L

)
ex, (53)

where the x axis points towards the night side magneto-
sphere, the y axis points from the southern geographic pole
to the northern geographic pole and the z axis completes
the right-handed system. Thus, we model the plasmoid as
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a two-dimensional structure in the x–y plane (Zhang et al.,
2013). The value B0 represents an arbitrarily chosen back-
ground amplitude, Bs = 0.3B0, and the length scale of the
current sheet is chosen to be L= 10−3RE, where RE is the
planetary radius, e.g., the terrestrial radius. The characteris-
tic length scale of the plasmoid is chosen to be λ0 = 1.5RE,
corresponding to k0 = 2π/λ0 ≈ 4.19R−1

E .
The resulting magnetic field data are evaluated at N = 7

synthetically generated spacecraft positions, representing a
HelioSwarm-like configuration (Klein and Spence, 2021).
As plasmoids are highly dynamical, traveling structures, the
measurement positions are shifted along the x axis with re-
spect to the origin of the plasmoid (left, mean, right), repre-
senting different time steps. The length scale λ0 (or equiva-
lently k0) of the plasmoid is estimated from the virtual space-
craft data via Eq. (51). The resulting field geometry (blue ar-
rows) and the measurement positions (red dots) as well as the
corresponding spectra are illustrated in Fig. 3.

When the measurement positions are distributed around
the origin of the plasmoid (mean), the implemented value of
k0 can be reconstructed with high precision from the data.
In the other cases, the spatial length scale is slightly overes-
timated and the relative error results in about 6% (left) and
4% (right). Thus, the wave telescope technique is capable of
(1) separating the plasmoid from the neutral sheet part and
(2) estimating the characteristic length scale of the plasmoid
from a limited number of measurement positions.

In analogy to the classical wave telescope technique, the
accuracy of the reconstruction depends of the relation be-
tween the plasmoid’s length scale λ0 and the mean distance
d between the spacecraft positions (Narita et al., 2022, e.g.,).
For example, if d � λ0, the measurement positions do not
properly cover the spatial extend of the plasmoid, resulting in
ambiguities within the reconstruction procedure. In the case
of d � λ0, the magnetic field structure of the plasmoid is
not detectable. Thus, the mean distance between the space-
craft positions has to be of the order of the plasmoid’s spatial
scale d ∼ λ0, which will be realized by the configuration of
the planned HelioSwarm multiscale mission.

Furthermore, the amplitude of the ring B0 has to be of the
same order as or larger than the sheath field Bs to guarantee
a precise reconstruction result. For example, in the case of
Bs = 10B0 no peak occurs within the spectrum Pr(k) and the
ring cannot be discerned from the background field. On the
other hand, the peak within the spectrum becomes sharper in
the case of Bs = 0.1B0.

4.3 Further applications

The application presented above of electromagnetic knots
indicates the potential of the representation. Spatially dis-
tributed electromagnetic knots as described by Cameron
(2018) enable the modeling of more complex structures,
provide generalized spectral information and open the door
for further applications, delivering an alternative interpreta-

tion of magnetospheric structures. For example, the magnetic
field configuration resulting from a field-aligned current can
be modeled as a superposition of magnetic rings stacked on
top of each other. Due to Ampère’s law, the corresponding
current density is given as a superposition of globules. Thus,
the inner structure of field-aligned currents can be analyzed
directly from the magnetic field measurements (Toepfer et
al., 2021). Also, the current system of Alfvén wings can be
described as a superposition of rings (Vernisse et al., 2018,
e.g.,) so that the corresponding magnetic field topology fol-
lows the structure of superposed globules. Furthermore, field
line resonances (Glassmeier et al., 1999; Plaschke et al.,
2008) may be described as a special superposition of mag-
netic rings.

5 Conclusions

Electromagnetic knots are a superposition of infinitely many
monochromatic plane waves with a spherical symmetric
spectrum and represent an exact solution of Maxwell’s equa-
tion. The resulting basis elements, i.e., the electromag-
netic ring and the globule, form a basis set for localized,
divergence-free spatial structures. For this reason, the con-
cept of electromagnetic knots opens the door for a com-
pletely new description and interpretation of spatial struc-
tures in planetary magnetospheres.

The classification of spatial structures evaluated at a lim-
ited number of measurement points describes an overde-
termined inversion problem. The wave telescope technique
serves as a robust data analysis tool for the global interpreta-
tion of spacecraft measurements in terms of expected phys-
ical structures. By reformulating the formalism of electro-
magnetic knots in terms of the wave telescope technique, we
extended the zoo of spatial structures that can be analyzed
by the method. In this sense, the present study can be inter-
preted as a generalization of the wave telescope technique to
a structure telescope technique.

For a first validation, the concept of electromagnetic knots
has been applied to the modeling of a plasmoid. Using a
HelioSwarm-like satellite configuration, the wave telescope
technique is capable of separating the plasmoid, modeled
as a magnetic ring, from the field generated by the neutral
sheet current and enables the estimation of the length scale
of the ring. Thus, the presented extension of the wave tele-
scope technique serves as a new data analysis tool for multi-
spacecraft missions, such as the planned HelioSwarm mis-
sion. However, the application of electromagnetic knots for
characterizing further structures, such as field-aligned cur-
rents or Alfvén wings, should be analyzed in future stud-
ies. In general, we conclude that the modified wave telescope
technique outlined here bears the potential for a new repre-
sentation and physical description of complex spatial struc-
tures existing in space plasmas.
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Appendix A: Evaluation of the integrals

The x component of the magnetic field in Eq. (22) can be
rewritten as

2π∫
0

π∫
0

(
−α′0 sinϕ+β ′0 cosθ cosϕ

)
eikek ·x sinθ dθ dϕ

=

π∫
0

sinθ eikzcosθ

2π∫
0

(
−α′0 sinϕ+β ′0 cosθ cosϕ

)
ei(kx cosϕ+ky sinϕ)sinθ dϕ dθ

=−α′0

π∫
0

sinθ eikzcosθ

2π∫
0

sinϕ eiη1 cosϕeiη2 sinϕ dϕ dθ

+β ′0

π∫
0

sinθ cosθ eikzcosθ

2π∫
0

cosϕ eiη1 cosϕ

eiη2 sinϕ dϕ dθ

=−α′0

π∫
0

sinθ eikzcosθ I1(θ)dθ +β ′0

π∫
0

sinθ cosθ

eikzcosθ I2(θ)dθ, (A1)

where

I1(θ) :=

2π∫
0

sinϕ eiη1 cosϕ eiη2 sinϕ dϕ (A2)

and

I2(θ) :=

2π∫
0

cosϕ eiη1 cosϕ eiη2 sinϕ dϕ. (A3)

Analogously, the y component in Eq. (22) results in

2π∫
0

π∫
0

(
α′0 cosϕ+β ′0 cosθ sinϕ

)
eikek ·x sinθ dθ dϕ

=

π∫
0

sinθ eikzcosθ

2π∫
0

(
α′0 cosϕ+β ′0 cosθ sinϕ

)
eiη1 cosϕ eiη2 sinϕ dϕ dθ

= α′0

π∫
0

sinθ eikzcosθ

2π∫
0

cosϕ eiη1 cosϕ eiη2 sinϕ dϕ dθ

+β ′0

π∫
0

sinθ cosθ eikzcosθ

2π∫
0

sinϕ eiη1 cosϕ

eiη2 sinϕ dϕ dθ

= α′0

π∫
0

sinθ eikzcosθ I2(θ)dθ

+β ′0

π∫
0

sinθ cosθ eikzcosθ I1(θ)dθ (A4)

and

−β ′0

2π∫
0

π∫
0

sin2θ eikek ·x dθ dϕ

=−β ′0

π∫
0

sin2θ eikzcosθ

2π∫
0

eiη1 cosϕ eiη2 sinϕ dϕ dθ

=−β ′0

π∫
0

sin2θ eikzcosθ I3(θ)dθ (A5)

for the z component in Eq. (22), where

I3(θ) :=

2π∫
0

eiη1 cosϕ eiη2 sinϕ dϕ. (A6)
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Here, the magnetic field is given by

B̃(k,ω0,x)=
B0

2π

{[
−α′0

π∫
0

sinθ eikzcosθ I1(θ)dθ

+β ′0

π∫
0

sinθ cosθ eikzcosθ I2(θ)dθ
]

ex

+

[
α′0

π∫
0

sinθ eikzcosθ I2(θ)dθ

+β ′0

π∫
0

sinθ cosθ eikzcosθ I1(θ)dθ
]

ey

−β ′0

π∫
0

sin2θ eikzcosθ I3(θ)dθ ez

}

=
B0

2π

{
α′0

[
−

π∫
0

sinθ eikzcosθ I1(θ)dθ ex

+

π∫
0

sinθ eikzcosθ I2(θ)dθ ey

]

+β ′0

[ π∫
0

sinθ cosθ eikzcosθ I2(θ)dθ ex

+

π∫
0

sinθ cosθ eikzcosθ I1(θ)dθ ey

]

−β ′0

π∫
0

sin2θ eikzcosθ I3(θ)dθ ez

}
. (A7)

At least, the remaining integrals I1(θ), I2(θ) and I3(θ) have
to be evaluated.

For the evaluation of the integral

I3(θ)=

2π∫
0

eiη1 cosϕ eiη2 sinϕ dϕ

=

2π∫
0

ei(η1 cosϕ+η2 sinϕ) dϕ (A8)

we define

tanγ0 :=
η2

η1

such that

sinγ0 =
η2√
η2

1 + η
2
2

and

cosγ0 =
η1√
η2

1 + η
2
2

.

Thus, the argument of the complex exponential can be rewrit-
ten as

η1 cosϕ+ η2 sinϕ =
√
η2

1 + η
2
2

(
η1√
η2

1 + η
2
2

cosϕ

+
η2√
η2

1 + η
2
2

sinϕ
)

=

√
η2

1 + η
2
2

(
cosγ0 cosϕ

+ sinγ0 sinϕ
)

=

√
η2

1 + η
2
2 sin(ϕ+ γ0). (A9)

Substituting τ := ϕ+γ0+π and using sin(ϕ+γ0)= sin(τ−
π)=−sinτ delivers

I3(θ)=

π+γ0∫
−π+γ0

e
−i

√
η2

1+η
2
2 sinτ dτ. (A10)

As the integrand is a 2π -periodic function, the integral is in-
dependent of γ0 so that

I3(θ)=

π+γ0∫
−π+γ0

e
−i

√
η2

1+η
2
2 sinτ dτ =

π∫
−π

e
−i

√
η2

1+η
2
2 sinτ dτ. (A11)

Making use of the definition of the Bessel functions of the
first kind,

Jn(x)=
1

2π

π∫
−π

ei(nτ−x sinτ) dτ,

yields

I3(θ)= 2πJ0(

√
η2

1 + η
2
2)= 2πJ0(kρ sinθ). (A12)

The integral

I1(θ)=

2π∫
0

sinϕ eiη1 cosϕ eiη2 sinϕ dϕ (A13)

can be evaluated using the identity

∂η2e
iη2 sinϕ

= i sinϕ eiη2 sinϕ (A14)

so that

sinϕ eiη2 sinϕ
=−i∂η2e

iη2 sinϕ
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and results in

I1(θ)=−i∂η2

2π∫
0

eiη1 cosϕ eiη2 sinϕ dϕ

=−2πi∂η2J0

(√
η2

1 + η
2
2

)
=−2πi

η2√
η2

1 + η
2
2

J ′0
(√

η2
1 + η

2
2

)

=−2πi sinφJ ′0
(√

η2
1 + η

2
2

)
(A15)

by means of Eq. (A12). Using

J ′0(x)=−J1(x), (A16)

delivers

I1(θ)= 2πi sinφJ1(kρ sinθ). (A17)

Analogously, the integral

I2(θ)=

2π∫
0

cosϕ eiη1 cosϕ eiη2 sinϕ dϕ (A18)

can be evaluated using

∂η1e
iη1 cosϕ

= i cosϕ eiη1 sinϕ (A19)

such that

cosϕ eiη1 cosϕ
=−i∂η1e

iη1 cosϕ (A20)

and results in

I2(θ)=−i∂η1

2π∫
0

eiη1 cosϕ eiη2 sinϕ dϕ

=−2πi∂η1J0

(√
η2

1 + η
2
2

)
=−2πi

η1√
η2

1 + η
2
2

J ′0
(√

η2
1 + η

2
2

)

= 2πi
η1√
η2

1 + η
2
2

J1

(√
η2

1 + η
2
2

)
= 2πi cosφJ1(kρ sinθ). (A21)

Therefore, the magnetic field is given by

B̃(k,ω0,x)= B0

{
iα′0

[
− sinφ

π∫
0

sinθ eikzcosθ

J1(kρ sinθ)dθ ex

+ cosφ

π∫
0

sinθ eikzcosθ

J1(kρ sinθ)dθ ey

]

+β ′0

[
i cosφ

π∫
0

sinθ cosθ eikzcosθ

J1(kρ sinθ)dθ ex

+ i sinφ

π∫
0

sinθ cosθ eikzcosθ

J1(kρ sinθ)dθ ey

]
−β ′0

π∫
0

sin2θ eikzcosθ J0(kρ sinθ)dθ ez

}

= B0

{
iα′0

π∫
0

sinθ eikzcosθ

J1(kρ sinθ)dθ eφ

+β ′0i

π∫
0

sinθ cosθ eikzcosθ

J1(kρ sinθ)dθ eρ

−β ′0

π∫
0

sin2θ eikzcosθ

J0(kρ sinθ)dθ ez

}
. (A22)

The remaining integrals can be expanded into the form

8 : =

π∫
0

sinθ eikzcosθ J1(kρ sinθ)dθ

=

π∫
0

sinθ cos(kzcosθ)J1(kρ sinθ)dθ

+ i

π∫
0

sinθ sin(kzcosθ)J1(kρ sinθ)dθ (A23)
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0 : = i

π∫
0

sinθ cosθ eikzcosθ J1(kρ sinθ)dθ

=−

π∫
0

sinθ cosθ sin(kzcosθ)J1(kρ sinθ)dθ

+ i

π∫
0

sinθ cosθ cos(kzcosθ)J1(kρ sinθ)dθ (A24)

and

4 : =

π∫
0

sin2θ eikzcosθ J0(kρ sinθ)dθ

=

π∫
0

sin2θ cos(kzcosθ)J0(kρ sinθ)dθ

+ i

π∫
0

sin2θ sin(kzcosθ)J0(kρ sinθ)dθ. (A25)

Introducing the transformation

θ̃ = θ −
π

2
or equivalently θ = θ̃ +

π

2

such that

sinθ = sin
(
θ̃ +

π

2

)
= cos θ̃

and

cosθ = cos
(
θ̃ +

π

2

)
=−sin θ̃

shows that the integrands of the imaginary parts are symmet-
ric functions with respect to the value θ̃ = 0 in the interval
θ̃ ∈

[
−
π
2 ,

π
2

]
so that

Im8=

π/2∫
−π/2

cos θ̃ sin(−kz sin θ̃ )J1(kρ cos θ̃ )dθ̃ = 0,

(A26)

Im0 =

π/2∫
−π/2

cos θ̃ (−sin θ̃ ) cos(kz(−sin θ̃ ))

J1(kρ cos θ̃ )dθ̃ = 0, (A27)

Im4=

π/2∫
−π/2

cos2θ̃ sin(kz(−sin θ̃ ))J0(kρ cos θ̃ )dθ̃ = 0, (A28)

Figure A1. Real (blue) and imaginary part (orange) of the integrand
of 8 in the interval θ ∈ [0,π ].

whereas the real parts do not vanish in general, as illustrated
in Fig. A1. Thus, introducing the abbreviations

f (x,k) : = Re


π∫

0

sinθ eikzcosθ J1(kρ sinθ)dθ


=

π∫
0

sinθ cos(kzcosθ)J1(kρ sinθ)dθ, (A29)

g(x,k) := Re

i
π∫

0

sinθ cosθ eikzcosθ J1(kρ sinθ)dθ


=−

π∫
0

sinθ cosθ sin(kzcosθ)J1(kρ sinθ)dθ, (A30)

and

h(x,k) : = −Re


π∫

0

sin2θ eikzcosθ J0(kρ sinθ)dθ


=−

π∫
0

sin2θ cos(kzcosθ)J0(kρ sinθ)dθ, (A31)

the measurable part (i.e., the real part) of the magnetic field
can finally be written as

B̃(k,ω0,x)= Re
{
B0
[
iα′0f eφ +β

′

0
(
g eρ +hez

)]}
. (A32)
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