Articles | Volume 40, issue 5
https://doi.org/10.5194/angeo-40-571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-571-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mid-latitude neutral wind responses to sub-auroral polarization streams
Daniel D. Billett
CORRESPONDING AUTHOR
University of Saskatchewan, Saskatoon, SK, Canada
Kathryn A. McWilliams
University of Saskatchewan, Saskatoon, SK, Canada
Robert B. Kerr
Computational Physics Inc., Lowel, MA, USA
Jonathan J. Makela
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
Alex T. Chartier
Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
J. Michael Ruohoniemi
Virginia Tech, Blacksburg, VA, USA
Sudha Kapali
Computational Physics Inc., Lowel, MA, USA
Mike A. Migliozzi
Computational Physics Inc., Lowel, MA, USA
Juanita Riccobono
Computational Physics Inc., Lowel, MA, USA
Related authors
No articles found.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020, https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Short summary
A novel oblique ionospheric radio sounder has been developed and demonstrated in Antarctica. The transmitter was located at McMurdo and the receiver at the South Pole (1356 km great-circle path). The system cycled through 12 frequencies each minute and recorded signal time of flight, intensity, and Doppler. This allowed for the estimation of peak ionospheric electron density, which validated well against independent data from the nearby Jang Bogo ionosonde and GPS TEC.
Claudia M. N. Candido, Jiankui Shi, Inez S. Batista, Fabio Becker-Guedes, Emília Correia, Mangalathayil A. Abdu, Jonathan Makela, Nanan Balan, Narayan Chapagain, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 37, 657–672, https://doi.org/10.5194/angeo-37-657-2019, https://doi.org/10.5194/angeo-37-657-2019, 2019
Short summary
Short summary
This study concerns postmidnight ionospheric irregularities observed during low solar activity conditions. We analyze data from digisondes and optical imaging systems located in an equatorial region over Brazil. The results show that they occur under unfavorable and unexpected conditions. This work can be useful for space weather forecasting during low solar activity.
Ying Zou, Brian M. Walsh, Yukitoshi Nishimura, Vassilis Angelopoulos, J. Michael Ruohoniemi, Kathryn A. McWilliams, and Nozomu Nishitani
Ann. Geophys., 37, 215–234, https://doi.org/10.5194/angeo-37-215-2019, https://doi.org/10.5194/angeo-37-215-2019, 2019
Short summary
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Khalifa Malki, Aziza Bounhir, Zouhair Benkhaldoun, Jonathan J. Makela, Nicole Vilmer, Daniel J. Fisher, Mohamed Kaab, Khaoula Elbouyahyaoui, Brian J. Harding, Amine Laghriyeb, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 36, 987–998, https://doi.org/10.5194/angeo-36-987-2018, https://doi.org/10.5194/angeo-36-987-2018, 2018
Short summary
Short summary
The novelty of this paper lies in the fact that it addresses the thermosphere–ionosphere coupling in a midlatitude site in north Africa. We have used Fabry–Perot measurements of thermospheric winds and wide-angle camera detection of ionospheric structures at an altitude of about 250 km. We have also used GPS data to extract the TEC over the studied area. We have focused our study on the 27 February geomagnetic storm.
Rafael L. A. Mesquita, John W. Meriwether, Jonathan J. Makela, Daniel J. Fisher, Brian J. Harding, Samuel C. Sanders, Fasil Tesema, and Aaron J. Ridley
Ann. Geophys., 36, 541–553, https://doi.org/10.5194/angeo-36-541-2018, https://doi.org/10.5194/angeo-36-541-2018, 2018
Short summary
Short summary
The midnight temperature maximum (MTM) is a phenomenon resulting from the constructive interference of the atmospheric tides. This paper brings the analysis of a long data set (846 nights) from the NATION network along with new analysis techniques (harmonic background removal and 2-D temperature interpolation) to detect the MTM in the mid-latitude range.
Igo Paulino, Joyrles F. Moraes, Gleuson L. Maranhão, Cristiano M. Wrasse, Ricardo Arlen Buriti, Amauri F. Medeiros, Ana Roberta Paulino, Hisao Takahashi, Jonathan J. Makela, John W. Meriwether, and José André V. Campos
Ann. Geophys., 36, 265–273, https://doi.org/10.5194/angeo-36-265-2018, https://doi.org/10.5194/angeo-36-265-2018, 2018
Short summary
Short summary
This article presents characteristics of periodic waves observed in the thermosphere from airglow images collected in the Northeast of Brazil. Using simultaneous measurements of the background wind in the airglow emission altitudes, it was possible to estimate the intrinsic parameters and the role of the wind in the propagation of the waves into the thermosphere. An anisotropy in the propagation direction of the waves was observed and it could be explained by the wind filtering process.
Cosme Alexandre O. B. Figueiredo, Ricardo A. Buriti, Igo Paulino, John W. Meriwether, Jonathan J. Makela, Inez S. Batista, Diego Barros, and Amauri F. Medeiros
Ann. Geophys., 35, 953–963, https://doi.org/10.5194/angeo-35-953-2017, https://doi.org/10.5194/angeo-35-953-2017, 2017
Fasil Tesema, Rafael Mesquita, John Meriwether, Baylie Damtie, Melessew Nigussie, Jonathan Makela, Daniel Fisher, Brian Harding, Endawoke Yizengaw, and Samuel Sanders
Ann. Geophys., 35, 333–344, https://doi.org/10.5194/angeo-35-333-2017, https://doi.org/10.5194/angeo-35-333-2017, 2017
Short summary
Short summary
Measurements of equatorial thermospheric winds obtained from an optical instrument called a Fabry–Perot interferometer in Ethiopia show a significance difference as compared with other longitudinal sectors. The zonal wind in this sector is small and shows a gradual decrease through out the night. Application of climatological wind and temperature models shows good agreement with the observations over Ethiopia.
Mohamed Kaab, Zouhair Benkhaldoun, Daniel J. Fisher, Brian Harding, Aziza Bounhir, Jonathan J. Makela, Amine Laghriyeb, Khalifa Malki, Ahmed Daassou, and Mohamed Lazrek
Ann. Geophys., 35, 161–170, https://doi.org/10.5194/angeo-35-161-2017, https://doi.org/10.5194/angeo-35-161-2017, 2017
Short summary
Short summary
we present the first multi-year results of the climatology of horizontal winds obtained during a period of 26 months. We compare the observed climatologies of neutral winds to that provided by the recently updated Horizontal Wind Model (HWM14) in order to validate that model's predictions of the thermospheric wind patterns over the eastern portion of Africa. HWM14 generally compares well with the horizontal winds, but significant magnitude and phase differences remain in certain seasons.
H. Y. Fu, W. A. Scales, P. A. Bernhardt, S. J. Briczinski, M. J. Kosch, A. Senior, M. T. Rietveld, T. K. Yeoman, and J. M. Ruohoniemi
Ann. Geophys., 33, 983–990, https://doi.org/10.5194/angeo-33-983-2015, https://doi.org/10.5194/angeo-33-983-2015, 2015
Short summary
Short summary
This paper reports the first experimental observation of stimulated Brillouin scattering near the third electron gyro-harmonic induced by high-frequency, high-power radio waves at EISCAT. The stimulated Brillouin scattering has also been correlated with simultaneous observations of the
field-aligned irregularities and electron temperature. The observed stimulated Brillouin scattering becomes enhanced for pumping near electron gyro-harmonics.
P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd, P. T. Jayachandran, D. W. Danskin, E. Spanswick, Y. Zhang, Y. Jiao, and Y. T. Morton
Ann. Geophys., 33, 637–656, https://doi.org/10.5194/angeo-33-637-2015, https://doi.org/10.5194/angeo-33-637-2015, 2015
Short summary
Short summary
Rapid fluctuations in amplitude and phase of radio waves passing through the ionosphere degrade GPS positional accuracy and can lead to navigational errors, particularly during geomagnetic storms. As a function of magnetic latitude and local time, regions of GPS phase scintillation at high latitudes are identified in the context of coupling between the solar wind and the magnetosphere-ionosphere system, which primarily depends on the interplanetary magnetic field magnitude and orientation.
P. Prikryl, R. Ghoddousi-Fard, L. Spogli, C. N. Mitchell, G. Li, B. Ning, P. J. Cilliers, V. Sreeja, M. Aquino, M. Terkildsen, P. T. Jayachandran, Y. Jiao, Y. T. Morton, J. M. Ruohoniemi, E. G. Thomas, Y. Zhang, A. T. Weatherwax, L. Alfonsi, G. De Franceschi, and V. Romano
Ann. Geophys., 33, 657–670, https://doi.org/10.5194/angeo-33-657-2015, https://doi.org/10.5194/angeo-33-657-2015, 2015
Short summary
Short summary
A series of interplanetary coronal mass ejections in the period 7–17 March 2012 caused geomagnetic storms that strongly affected the high-latitude ionosphere in the Northern and Southern Hemisphere. Interhemispheric comparison of GPS phase scintillation reveals commonalities as well as asymmetries, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are primarily caused by the dawn-dusk component of the interplanetary magnetic field.
E. S. Miller, H. Kil, J. J. Makela, R. A. Heelis, E. R. Talaat, and A. Gross
Ann. Geophys., 32, 959–965, https://doi.org/10.5194/angeo-32-959-2014, https://doi.org/10.5194/angeo-32-959-2014, 2014
T. M. Duly, N. P. Chapagain, and J. J. Makela
Ann. Geophys., 31, 2229–2237, https://doi.org/10.5194/angeo-31-2229-2013, https://doi.org/10.5194/angeo-31-2229-2013, 2013
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–atmosphere interactions
On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3
Calibrating estimates of ionospheric long-term change
Analysis of in situ measurements of electron, ion and neutral temperatures in the lower thermosphere–ionosphere
Investigation of PMSE layers during solar maximum and solar minimum
Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector
Arecibo measurements of D-region electron densities during sunset and sunrise: implications for atmospheric composition
Entangled dynamos and Joule heating in the Earth's ionosphere
Evidence of vertical coupling: meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere
Quasi-10 d wave modulation of an equatorial ionization anomaly during the Southern Hemisphere stratospheric warming of 2002
Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear
Fabrizio Sassi, Angeline G. Burrell, Sarah E. McDonald, Jennifer L. Tate, and John P. McCormack
Ann. Geophys., 42, 255–269, https://doi.org/10.5194/angeo-42-255-2024, https://doi.org/10.5194/angeo-42-255-2024, 2024
Short summary
Short summary
This study shows how middle-atmospheric data (starting at 40 km) affect day-to-day ionospheric variability. We do this by using lower atmospheric measurements that include and exclude the middle atmosphere in a coupled ionosphere–thermosphere model. Comparing the two simulations reveals differences in two thermosphere–ionosphere coupling mechanisms. Additionally, comparison against observations showed that including the middle-atmospheric data improved the resulting ionosphere.
Christopher John Scott, Matthew N. Wild, Luke Anthony Barnard, Bingkun Yu, Tatsuhiro Yokoyama, Michael Lockwood, Cathryn Mitchel, John Coxon, and Andrew Kavanagh
EGUsphere, https://doi.org/10.5194/egusphere-2023-2599, https://doi.org/10.5194/egusphere-2023-2599, 2023
Short summary
Short summary
Long-term change in the ionosphere are expected due to increase in greenhouse gases in the lower atmosphere. Empirical formulae are used to estimate height. Through comparison with independent data we show that there are seasonal and long-term biases introduced by the empirical model. We conclude that estimates of long-term changes in ionospheric height need to account for these biases.
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
Dorota Jozwicki, Puneet Sharma, Devin Huyghebaert, and Ingrid Mann
EGUsphere, https://doi.org/10.5194/egusphere-2023-977, https://doi.org/10.5194/egusphere-2023-977, 2023
Short summary
Short summary
We investigated the relationship between PMSE layers and the solar cycle. Our results indicate that PMSE altitude, echo power, and layer thickness are on average higher during solar maximum than solar minimum. Higher electron densities at ionospheric altitudes might be necessary to observe multi-layered PMSE. We observed that the thickness decreases as the number of multi-layers increase. We hypothesized that the thickness of PMSE layers may be related to the vertical wavelength of gravity waves
Pedro Alves Fontes, Marcio Tadeu de Assis Honorato Muella, Laysa Cristina Araújo Resende, Vânia Fátima Andrioli, Paulo Roberto Fagundes, Valdir Gil Pillat, Paulo Prado Batista, and Alexander Jose Carrasco
Ann. Geophys., 41, 209–224, https://doi.org/10.5194/angeo-41-209-2023, https://doi.org/10.5194/angeo-41-209-2023, 2023
Short summary
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Petra Koucká Knížová, Kateřina Podolská, Kateřina Potužníková, Daniel Kouba, Zbyšek Mošna, Josef Boška, and Michal Kozubek
Ann. Geophys., 38, 73–93, https://doi.org/10.5194/angeo-38-73-2020, https://doi.org/10.5194/angeo-38-73-2020, 2020
Short summary
Short summary
Severe meteorological storm Fabienne passing above central Europe was observed. Significant variations of atmospheric and ionospheric parameters were detected. Above Europe, stratospheric temperature and wind significantly changed in coincidence with frontal transition. Within ionospheric parameters, we have detected significant wave-like activity shortly after the cold front crossed the observational point. During the storm event, we have observed strong horizontal plasma flow shears.
Xiaohua Mo and Donghe Zhang
Ann. Geophys., 38, 9–16, https://doi.org/10.5194/angeo-38-9-2020, https://doi.org/10.5194/angeo-38-9-2020, 2020
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Cited articles
Aa, E., Zhang, S.-R., Erickson, P. J., Coster, A. J., Goncharenko, L. P., Varney, R. H., and Eastes, R.:
Salient Midlatitude Ionosphere-Thermosphere Disturbances Associated With SAPS During a Minor but Geo-Effective Storm at Deep Solar Minimum, J. Geophys. Res.-Space, 126, e2021JA029509, https://doi.org/10.1029/2021JA029509, 2021. a
Anderson, P. C., Carpenter, D. L., Tsuruda, K., Mukai, T., and Rich, F. J.:
Multisatellite observations of rapid subauroral ion drifts (SAID), J. Geophys. Res.-Space, 106, 29585–29599, 2001. a
Airglow: Calendar, https://airglow.ece.illinois.edu/Data/Calendar, last access: 23 September 2022. a
Billett, D. D. and McWilliams, K. A.:
The SuperDARN's role in ion-neutral coupling research, Polar Sci., 28, 100624, https://doi.org/10.1016/j.polar.2020.100624, 2021. a
Billett, D. D., Wild, J. A., Grocott, A., Aruliah, A. L., Ronksley, A. M., Walach, M.-T., and Lester, M.:
Spatially resolved neutral wind response times during high geomagnetic activity above Svalbard, J. Geophys. Res.-Space, 124, 6950–6960, 2019. a
Billett, D. D., Hosokawa, K., Grocott, A., Wild, J. A., Aruliah, A. L., Ogawa, Y., Taguchi, S., and Lester, M.:
Multi-Instrument Observations of Ion-Neutral Coupling in the Dayside Cusp, Geophys. Res. Lett., 47, e2019GL085590, https://doi.org/10.1029/2019GL085590, 2020a. a
Billett, D. D., McWilliams, K. A., and Conde, M. G.:
Colocated observations of the E and F region thermosphere during a substorm, J. Geophys. Res.-Space, 125, e2020JA028165, https://doi.org/10.1029/2020JA028165, 2020b. a
Blanc, M. and Richmond, A. D.:
The ionospheric disturbance dynamo, J. Geophys. Res.-Space, 85, 1669–1686, 1980. a
Bristow, W. A., Otto, A., and Lummerzheim, D.:
Substorm convection patterns observed by the super dual auroral radar network, J. Geophys. Res.-Space, 106, 24593–24609, 2001. a
Chisham, G. and Pinnock, M.:
Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter, Ann. Geophys., 20, 13–28, https://doi.org/10.5194/angeo-20-13-2002, 2002. a
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J.-P., and Walker, A. D. M.:
A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33–109, 2007. a
Clausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Greenwald, R. A., Thomas, E. G., Shepherd, S. G., Talaat, E. R., Bristow, W. A., Zheng, Y., Coster, A. J., and Sazykin, S.:
Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations, J. Geophys. Res.-Space, 117, A05306, https://doi.org/10.1029/2011JA017232, 2012. a, b
Cowley, S. W. H. and Lockwood, M.:
Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system, Annales Geophysicae, 10, 103–115, 1992. a
Craven, J. D. and Frank, L. A.:
Latitudinal motions of the aurora during substorms, J. Geophys. Res.-Space, 92, 4565–4573, 1987. a
Deng, W., Killeen, T. L., Burns, A. G., and Roble, R. G.:
The flywheel effect: Ionospheric currents after a geomagnetic storm, Geophys. Res. Lett., 18, 1845–1848, 1991. a
Deng, Y. and Ridley, A. J.:
Dependence of neutral winds on convection E-field, solar EUV, and auroral particle precipitation at high latitudes, J. Geophys. Res.-Space, 111, A09306, https://doi.org/10.1029/2005JA011368, 2006. a
Ding, G.-X., He, F., Zhang, X.-X., and Chen, B.:
A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI, J. Geophys. Res.-Space, 122, 2162–2173, 2017. a
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. F., and Klenzing, J. H.:
An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2, 301–319, 2015. a, b
Fejer, B. G., Emmert, J. T., and Sipler, D. P.:
Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill, J. Geophys. Res.-Space, 107, SIA 3-1–SIA 3-9, https://doi.org/10.1029/2001JA000300, 2002. a
Foster, J. C. and Burke, W. J.:
SAPS: A new categorization for sub-auroral electric fields, Eos T. Am. Geophys. Un., 83, 393–394, 2002. a
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J.-P., Cerisier, J.-C., Senior, C., Hanuise, C., Hunsucker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D. M., Sato, N., and Yamagishi, H.:
Darn/superdarn, Space Sci. Rev., 71, 761–796, 1995. a
Harding, B. J., Gehrels, T. W., and Makela, J. J.:
Nonlinear regression method for estimating neutral wind and temperature from Fabry–Perot interferometer data, Appl. Optics, 53, 666–673, 2014. a
Harding, B. J., Makela, J. J., and Meriwether, J. W.:
Estimation of mesoscale thermospheric wind structure using a network of interferometers, J. Geophys. Res.-Space, 120, 3928–3940, 2015. a
Huang, C.-S. and Foster, J. C.:
Correlation of the subauroral polarization streams (SAPS) with the Dst index during severe magnetic storms, J. Geophys. Res.-Space, 112, A11302, https://doi.org/10.1029/2007JA012584, 2007. a
Imber, S. M., Milan, S. E., and Lester, M.:
The Heppner–Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval, J. Geophys. Res.-Space, 118, 685–697, 2013. a
Joshi, P. P., H. Baker, J. B., Ruohoniemi, J. M., Makela, J. J., Fisher, D. J., Harding, B. J., Frissell, N. A., and Thomas, E. G.:
Observations of storm time midlatitude ion-neutral coupling using SuperDARN radars and NATION Fabry–Perot interferometers, J. Geophys. Res.-Space, 120, 8989–9003, 2015. a
Kataoka, R., Nishitani, N., Ebihara, Y., Hosokawa, K., Ogawa, T., Kikuchi, T., and Miyoshi, Y.:
Dynamic variations of a convection flow reversal in the subauroral postmidnight sector as seen by the SuperDARN Hokkaido HF radar, Geophys. Res. Lett., 34, L21105, https://doi.org/10.1029/2007GL031552, 2007. a
Kerr, R., Kapali, S., Riccobono, J., Migliozzi, M. A., Noto, J., Brum, C. G. M., and Garcia, R.:
Climatology of Neutral vertical winds in the midlatitude thermosphere, in: AGU Fall Meeting Abstracts, 11 December 2017, New Orleans, vol. 2017, SA44A–06, 2017. a
Kerr, R. B.:
The “Red Line” Fabry–Perot Interferometer (FPI), http://neutralwinds.com/redlinedescribe.html, last access: 23 September 2022. a
Kunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., Nishitani, N., Oksavik, K., Erickson, P. J., Coster, A. J., Shepherd, S. G., Bristow, W. A., and Miller, E. S.:
A new empirical model of the subauroral polarization stream, J. Geophys. Res.-Space, 123, 7342–7357, 2018. a
Landry, R. G. and Anderson, P. C.:
An auroral boundary-oriented model of subauroral polarization streams (SAPS), J. Geophys. Res.-Space, 123, 3154–3169, 2018. a
Loewe, C. A. and Prölss, G. W.:
Classification and mean behavior of magnetic storms, J. Geophys. Res.-Space, 102, 14209–14213, 1997. a
Makela, J. J., Meriwether, J. W., Huang, Y., and Sherwood, P. J.:
Simulation and analysis of a multi-order imaging Fabry–Perot interferometer for the study of thermospheric winds and temperatures, Appl. Optics, 50, 4403–4416, 2011. a
Makela, J. J., Meriwether, J. W., Ridley, A. J., Ciocca, M., and Castellez, M. W.:
Large-scale measurements of thermospheric dynamics with a multisite Fabry–Perot interferometer network: Overview of plans and results from midlatitude measurements, International Journal of Geophysics, 2012, 872140, https://doi.org/10.1155/2012/872140, 2012. a, b
Makela, J. J., Harding, B. J., Meriwether, J. W., Mesquita, R., Sanders, S., Ridley, A. J., Castellez, M. W., Ciocca, M., Earle, G. D., Frissell, N. A., Hampton, D. L., Gerrard, A. J., Noto, J., and Martinis, C. R.:
Storm time response of the midlatitude thermosphere: Observations from a network of Fabry–Perot interferometers, J. Geophys. Res.-Space, 119, 6758–6773, 2014. a, b, c
Meriwether, J. W.:
Studies of thermospheric dynamics with a Fabry–Perot interferometer network: A review, J. Atmos. Sol.-Terr. Phy., 68, 1576–1589, 2006. a
Millstone Hill: Madrigal Database, http://millstonehill.haystack.mit.edu/index.html, last access: 23 September 2022. a
NASA: High resolution (1-min, 5-min) OMNI: Solar wind magnetic field and plasma data at Earth's Bow Shock Nose (BSN), also geomagnetic activity indices and 5-min energetic proton fluxes, https://omniweb.gsfc.nasa.gov/ow_min.html, last access: 23 September 2022. a
NASA: DMSP SSUSI auroral boundary data, https://spdf.gsfc.nasa.gov/pub/data/dmsp/, last access: 23 September 2022b. a
Nagano, H., Nishitani, N., and Hori, T.:
Occurrence characteristics and lowest speed limit of subauroral polarization stream (SAPS) observed by the SuperDARN Hokkaido East radar, Earth Planets Space, 67, 1–7, 2015. a
Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., Chisham, G., Hori, T., Thomas, E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., Wild, J. A., Milan, S. E., Bristow, W. A., Devlin, J., Miller, E., Greenwald, R. A., Ogawa, T., and Kikuchi, T.:
Review of the accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN) HF radars, Progress in Earth and Planetary Science, 6, 1–57, 2019. a
Oksavik, K., Greenwald, R. A., Ruohoniemi, J. M., Hairston, M. R., Paxton, L. J., Baker, J. B. H., Gjerloev, J. W., and Barnes, R. J.:
First observations of the temporal/spatial variation of the sub-auroral polarization stream from the SuperDARN Wallops HF radar, Geophys. Res. Lett., 33, L12104, https://doi.org/10.1029/2006GL026256, 2006. a
Paxton, L. J., Morrison, D., Zhang, Y., Kil, H., Wolven, B., Ogorzalek, B. S., Humm, D. C., and Meng, C.-I.:
Validation of remote sensing products produced by the Special Sensor Ultraviolet Scanning Imager (SSUSI): A far UV-imaging spectrograph on DMSP F-16, in: Optical spectroscopic techniques, remote sensing, and instrumentation for atmospheric and space research IV, Vol. 4485, International Society for Optics and Photonics, 338–348, 2002. a
Rishbeth, H., Fuller-Rowell, T. J., and Rodger, A. S.:
F-layer storms and thermospheric composition, Phys. Scripta, 36, 327, https://doi.org/10.1088/0031-8949/36/2/024, 1987. a
Ruohoniemi, J. M. and Baker, K. B.:
Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar observations, J. Geophys. Res.-Space, 103, 20797–20811, 1998. a
Shepherd, S. G.:
Altitude-adjusted corrected geomagnetic coordinates: Definition and functional approximations, J. Geophys. Res.-Space, 119, 7501–7521, 2014. a
Sivla, W. T. and McCreadie, H.:
Mid-latitude thermospheric zonal winds during the equinoxes, Adv. Space Res., 54, 499–508, 2014. a
Southwood, D. J. and Wolf, R. A.:
An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res.-Space, 83, 5227–5232, 1978. a
SuperDARN Data Analysis Working Group, Schmidt, M. T., Bland, E. C., Thomas, E. G., Burrell, A. G., Coco, I., Ponomarenko, P. V., Reimer, A. S., Sterne, K. T., and Walach, M.-T.: SuperDARN/rst: RST 4.6 (v4.6), Zenodo [software], https://doi.org/10.5281/zenodo.5156752, 2021. a
Super Dual Auroral Radar Network: SuperDARN, https://www.frdr-dfdr.ca/repo/collection/superdarn, Digital Research Alliance of Canada, last access: 23 September 2022. a
Thomas, E. G. and Shepherd, S. G.:
Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations, J. Geophys. Res.-Space, 123, 3196–3216, 2018. a
Walach, M.-T. and Grocott, A.:
SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving, J. Geophys. Res.-Space, 124, 5828–5847, 2019. a
Wang, W., Talaat, E. R., Burns, A. G., Emery, B., Hsieh, S.-Y., Lei, J., and Xu, J.:
Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations, J. Geophys. Res.-Space, 117, A07301, https://doi.org/10.1029/2012JA017656, 2012. a
WDC for Geomag., Kyoto: Geomagnetic Equatorial Dst index Home Page, https://wdc.kugi.kyoto-u.ac.jp/dstdir/, last access: 23 September 2022. a
Yagi, T. and Dyson, P. L.:
The response of the mid-latitude thermospheric wind to magnetic activity, Planet. Space Sci., 33, 461–467, 1985. a
Zhang, Q., Liu, Y. C.-M., Zhang, Q.-H., Xing, Z.-Y., and Ma, Y.-Z.:
Longitudinal Evolution of the Velocity of Subauroral Polarization Streams (SAPS) in Different Phases of Magnetic Storms: SuperDARN Observations, J. Geophys. Res.-Space, 126, e2021JA029340, https://doi.org/10.1029/2021JA029340, 2021.
a
Zou, S., Lyons, L. R., Wang, C.-P., Boudouridis, A., Ruohoniemi, J. M., Anderson, P. C., Dyson, P. L., and Devlin, J. C.:
On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations, J. Geophys. Res.-Space, 114, A01205, https://doi.org/10.1029/2008JA013449, 2009. a
Zou, S., Lyons, L. R., and Nishimura, Y.:
Mutual Evolution of Aurora and Ionospheric Electrodynamic Features Near the Harang Reversal During Substorms, American Geophysical Union (AGU), https://doi.org/10.1029/2011GM001163, 159–170, 2012. a
Zou, Y., Lyons, L., Shi, X., Liu, J., Wu, Q., Conde, M., Shepherd, S. G., Mende, S., Zhang, Y., and Coster, A.:
Effects of Subauroral Polarization Streams on the Upper Thermospheric Winds during Non-Storm Time, J. Geophys. Res.-Space, 127, e2021JA029988, https://doi.org/10.1029/2021JA029988, 2022. a
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes,...