Articles | Volume 40, issue 4
https://doi.org/10.5194/angeo-40-531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-531-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations
Homayon Aryan
CORRESPONDING AUTHOR
University of California Los Angeles, Atmospheric and Oceanic Sciences, Math Sciences Building, Los Angeles, California 90095-1565, USA
Jacob Bortnik
University of California Los Angeles, Atmospheric and Oceanic Sciences, Math Sciences Building, Los Angeles, California 90095-1565, USA
Jinxing Li
University of California Los Angeles, Atmospheric and Oceanic Sciences, Math Sciences Building, Los Angeles, California 90095-1565, USA
James Michael Weygand
Department of Earth, Planetary and Space Sciences, University of California Los Angeles, California 90095, USA
Xiangning Chu
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
Vassilis Angelopoulos
Department of Earth, Planetary and Space Sciences, University of California Los Angeles, California 90095, USA
Related authors
No articles found.
Tomotaka Tanaka, Yasunobu Ogawa, Yuto Katoh, Mizuki Fukizawa, Anton Artemyev, Vassilis Angelopoulos, Xiao-Jia Zhang, Yoshimasa Tanaka, and Akira Kadokura
EGUsphere, https://doi.org/10.5194/egusphere-2025-768, https://doi.org/10.5194/egusphere-2025-768, 2025
Short summary
Short summary
The magnetic mirror force bends the orbits of electrons precipitating into the atmosphere. It has been suggested that relativistic electrons make much less ionization due to the force than if it did not exist, but the actual effectivity in the atmospheric electron density has not been revealed. We used conjugated observational data from the ELFIN satellite and the EISCAT Tromsø radar to find that the electron density decreased by about 40 % at 80 km altitude because of the force.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Cited articles
Akasofu, S.-I.:
Physics of Magnetospheric Substorms, D. Reidel, Dordrecht, the Netherlands, 170–187, 1976. a
Amm, O. and Viljanen, A.:
Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planets Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. a
Amm, O., Engebretson, M. J., Hughes, T., Newitt, L., Viljanen, A., and Watermann, J.:
A traveling convection vortex event study: Instantaneous ionospheric equivalent currents, estimation of field-aligned currents, and the role of induced currents, J. Geophys. Res.-Space, 107, SIA1-1–SIA1-11, https://doi.org/10.1029/2002JA009472, 2002. a, b
Angelopoulos, V.:
The THEMIS Mission, Space Sci. Rev., 141, 5, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.-H., Auster, U., Donovan, E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Zhou, X.-Z., and Kepko, L.:
Tail Reconnection Triggering Substorm Onset, Science, 321, 931–935, https://doi.org/10.1126/science.1160495, 2008. a, b
Artemyev, A. V., Angelopoulos, V., Runov, A., and Petrukovich, A. A.:
Global View of Current Sheet Thinning: Plasma Pressure Gradients and Large-Scale Currents, J. Geophys. Res.-Space, 124, 264–278, https://doi.org/10.1029/2018JA026113, 2019. a
Aryan, H.: THEMIS data, http://themis.ssl.berkeley.edu, last access: 6 June 2022a. a
Aryan, H.: SECs data, http://www.igpp.ucla.edu/public/jweygand/SECS/ , last access: 6 June 2022b. a
Aryan, H.: GOES data, https://www.ngdc.noaa.gov/stp/satellite/goes/, last access: 6 June 2022c. a
Aryan, H.: Supermag data, http://supermag.jhuapl.edu/, last access: 6 June 2022d. a
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann, M.:
The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141, 235–264, https://doi.org/10.1007/s11214-008-9365-9, 2008. a
Baker, D. N., Fritz, T. A., Wilken, B., Higbie, P. R., Kaye, S. M., Kivelson, M. G., Moore, T. E., Stüdemann, W., Masley, A. J., Smith, P. H., and Vampola, A. L.:
Observation and modeling of energetic particles at synchronous orbit on July 29, 1977, J. Geophys. Res.-Space, 87, 5917–5932, https://doi.org/10.1029/JA087iA08p05917, 1982. a
Baumjohann, W., Paschmann, G., and Cattell, C. A.:
Average plasma properties in the central plasma sheet, Geophys. Res. Lett., 94, 6597–6606, https://doi.org/10.1029/JA094iA06p06597, 1989. a
Baumjohann, W., Blanc, M., Fedorov, A., and Glassmeier, K.-H.:
Current Systems in Planetary Magnetospheres and Ionospheres, Space Sci. Rev., 152, 99–134, https://doi.org/10.1007/s11214-010-9629-z, 2010. a
Birn, J. and Hesse, M.:
The substorm current wedge in MHD simulations, J. Geophys. Res.-Space, 118, 3364–3376, https://doi.org/10.1002/jgra.50187, 2013. a
Birn, J. and Hesse, M.:
The substorm current wedge: Further insights from MHD simulations, J. Geophys. Res.-Space, 119, 3503–3513, https://doi.org/10.1002/2014JA019863, 2014. a
Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., Belian, R. D., and Hesse, M.:
Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields, J. Geophys. Res.-Space, 102, 2325–2341, https://doi.org/10.1029/96JA03032, 1997. a
Birn, J., Nakamura, R., Panov, E. V., and Hesse, M.:
Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection, J. Geophys. Res.-Space, 116, A01210, https://doi.org/10.1029/2010JA016083, 2011. a
Bonnell, J. W., Mozer, F. S., Delory, G., Hull, A. J., Ergun, R. E., Cully, C. M., V., A., and Harvey, P. R.:
The electric field instrument (EFI) for THEMIS, Space Sci. Rev., 141, 303–341, 2008. a
Borovsky, J. E. and Bonnell, J.:
The dc electrical coupling of flow vortices and flow channels in the magnetosphere to the resistive ionosphere, J. Geophys. Res.-Space, 106, 28967–28994, https://doi.org/10.1029/1999JA000245, 2001. a
Chu, X., McPherron, R. L., Hsu, T.-S., and Angelopoulos, V.:
Solar cycle dependence of substorm occurrence and duration: Implications for onset, J. Geophys. Res.-Space, 120, 2808–2818, https://doi.org/10.1002/2015JA021104, 2015a. a, b
Chu, X., McPherron, R. L., Hsu, T.-S., Angelopoulos, V., Pu, Z., Yao, Z., Zhang, H., and Connors, M.:
Magnetic mapping effects of substorm currents leading to auroral poleward expansion and equatorward retreat, J. Geophys. Res.-Space, 120, 253–265, https://doi.org/10.1002/2014JA020596, 2015b. a, b
Chu, X., McPherron, R., Hsu, T., Angelopoulos, V., Weygand, J. M., Liu, J., and Bortnik, J.:
Magnetotail flux accumulation leads to substorm current wedge formation: A case study, J. Geophys. Res.-Space, 126, https://doi.org/10.1029/2020JA028342, 2021. a, b
Dubyagin, S., Sergeev, V., Apatenkov, S., Angelopoulos, V., Nakamura, R., McFadden, J., Larson, D., and Bonnell, J.:
Pressure and entropy changes in the flow-braking region during magnetic field dipolarization, J. Geophys. Res.-Space, 115, A10225, https://doi.org/10.1029/2010JA015625, 2010. a, b
Dubyagin, S., Sergeev, V., Apatenkov, S., Angelopoulos, V., Runov, A., Nakamura, R., Baumjohann, W., McFadden, J., and Larson, D.:
Can flow bursts penetrate into the inner magnetosphere?, Geophys. Res. Lett., 38, L08102, https://doi.org/10.1029/2011GL047016, 2011. a, b
Gabrielse, C., Spanswick, E., Artemyev, A., Nishimura, Y., Runov, A., Lyons, L., Angelopoulos, V., Turner, D. L., Reeves, G. D., McPherron, R., and Donovan, E.:
Utilizing the Heliophysics/Geospace System Observatory to Understand Particle Injections: Their Scale Sizes and Propagation Directions, J. Geophys. Res.-Space, 124, 5584–5609, https://doi.org/10.1029/2018JA025588, 2019. a
Gjerloev, J. W.:
A Global Ground-Based Magnetometer Initiative, EOS T. Am. Geophys. Un., 90, 230–231, https://doi.org/10.1029/2009EO270002, 2009. a
Hones Jr., E. W., Akasofu, S.-I., Perreault, P., Bame, S. J., and Singer, S.:
Poleward expansion of the auroral oval and associated phenomena in the magnetotail during auroral substorms: 1., J. Geophys. Res., 75, 7060–7074, https://doi.org/10.1029/JA075i034p07060, 1970. a
Hsu, T. S. and McPherron, R. L.:
A statistical analysis of substorm associated tail activity, Adv. Space Res.,, 50, 1317–1343, 2012. a
Kauristie, K., Sergeev, V. A., Kubyshkina, M., Pulkkinen, T. I., Angelopoulos, V., Phan, T., Lin, R. P., and Slavin, J. A.:
Ionospheric current signatures of transient plasma sheet flows, J. Geophys. Res.-Space, 105, 10677–10690, https://doi.org/10.1029/1999JA900487, 2000. a
Keiling, A., Angelopoulos, V., Runov, A., Weygand, J., Apatenkov, S. V., Mende, S., McFadden, J., Larson, D., Amm, O., Glassmeier, K.-H., and Auster, H. U.:
Substorm current wedge driven by plasma flow vortices: THEMIS observations, J. Geophys. Res.-Space, 114, A00C22, https://doi.org/10.1029/2009JA014114, 2009. a, b, c, d, e
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., W., B., Birn, J., Lester, M., Nakamura, R., Pulkkinen, T. I., and Sergeev, V.:
Substorm Current Wedge Revisited, Space Sci. Rev., 190, 1–46, 2014. a
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., Lester, M., Nakamura, R., Pulkkinen, T. I., and Sergeev, V.:
Substorm Current Wedge Revisited, Space Sci. Rev., 190, 1–46, https://doi.org/10.1007/s11214-014-0124-9, 2015. a
Koskinen, H. E. J., Lopez, R. E., Pellinen, R. J., Pulkkinen, T. I., Baker, D. N., and Bösinger, T.:
Pseudobreakup and substorm growth phase in the ionosphere and magnetosphere, J. Geophys. Res.-Space, 98, 5801–5813, https://doi.org/10.1029/92JA02482, 1993. a
Li, J., Chu, X., Bortnik, J., Weygand, J., Wang, C.-P., Liu, J., McPherron, R., and Kellerman, A.:
Characteristics of Substorm-Onset-Related and Non-substorm Earthward Fast Flows and Associated Magnetic Flux Transport: THEMIS Observations, J. Geophys. Res.-Space, 126, e2020JA028313, https://doi.org/10.1029/2020JA028313, 2021. a, b, c, d, e
Li, S.-S., Angelopoulos, V., Runov, A., Zhou, X.-Z., McFadden, J., Larson, D., Bonnell, J., and Auster, U.:
On the force balance around dipolarization fronts within bursty bulk flows, J. Geophys. Res.-Space, 116, A00I35, https://doi.org/10.1029/2010JA015884, 2011. a
Liu, J., Angelopoulos, V., Runov, A., and Zhou, X.-Z.:
On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets, J. Geophys. Res.-Space, 118, 2000–2020, https://doi.org/10.1002/jgra.50092, 2013a. a, b
Liu, J., Angelopoulos, V., Zhou, X.-Z., Runov, A., and Yao, Z.:
On the role of pressure and flow perturbations around dipolarizing flux bundles, J. Geophys. Res.-Space, 118, 7104–7118, https://doi.org/10.1002/2013JA019256, 2013b. a
Liu, J., Angelopoulos, V., Zhou, X.-Z., and Runov, A.:
Magnetic flux transport by dipolarizing flux bundles, J. Geophys. Res.-Space, 119, 909–926, https://doi.org/10.1002/2013JA019395, 2014. a
Liu, J., Angelopoulos, V., Chu, X., Zhou, X.-Z., and Yue, C.:
Substorm current wedge composition by wedgelets, Geophys. Res. Lett., 42, 1669–1676, https://doi.org/10.1002/2015GL063289, 2015. a
Lopez, R. E., Sibeck, D. G., McEntire, R. W., and Krimigis, S. M.:
The energetic ion substorm injection boundary, J. Geophys. Res.-Space, 95, 109–117, https://doi.org/10.1029/JA095iA01p00109, 1990. a
Lyons, L. R., Nishimura, Y., Xing, X., Runov, A., Angelopoulos, V., Donovan, E., and Kikuchi, T.:
Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere, J. Geophys. Res.-Space, 117, A02212, https://doi.org/10.1029/2011JA017265, 2012. a
McIlwain, C. E.:
Plasma convection in the vicinity of the geosynchronous orbit, 269, Springer Dordrecht, Dordrecht, the Netherlands, 1972. a
McPherron, R. L.:
Growth phase of magnetospheric substorms, J. Geophys. Res. (1896–1977), 75, 5592–5599, https://doi.org/10.1029/JA075i028p05592, 1970. a
McPherron, R. L.:
Magnetospheric substorms, Rev. Geophys., 17, 657–681, https://doi.org/10.1029/RG017i004p00657, 1979. a
McPherron, R. L. and Chu, X.:
The Mid-Latitude Positive Bay and the MPB Index of Substorm Activity, Space Sci. Rev., 206, 91–122, https://doi.org/10.1007/s11214-016-0316-6, 2017. a
McPherron, R. L. and Chu, X.:
The Midlatitude Positive Bay Index and the Statistics of Substorm Occurrence, J. Geophys. Res.-Space, 123, 2831–2850, https://doi.org/10.1002/2017JA024766, 2018. a
McPherron, R. L., Russell, C. T., and Aubry, M. P.:
Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res. (1896–1977), 78, 3131–3149, https://doi.org/10.1029/JA078i016p03131, 1973. a, b
McPherron, R. L., Hsu, T.-S., Kissinger, J., Chu, X., and Angelopoulos, V.:
Characteristics of plasma flows at the inner edge of the plasma sheet, J. Geophys. Res.-Space, 116, A00I33, https://doi.org/10.1029/2010JA015923, 2011. a, b
Nakamura, R., Baker, D. N., Yamamoto, T., Belian, R. D., Bering III, E. A., Benbrook, J. R., and Theall, J. R.:
Particle and field signatures during pseudobreakup and major expansion onset, J. Geophys. Res.-Space, 99, 207–221, https://doi.org/10.1029/93JA02207, 1994. a
Nakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., Mukai, T., and Liou, K.:
Earthward flow bursts, auroral streamers, and small expansions, J. Geophys. Res.-Space, 106, 10791–10802, https://doi.org/10.1029/2000JA000306, 2001. a
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Glassmeier, K.-H., Kistler, L., Mouikis, C., Zhang, T. L., Eichelberger, H., and Runov, A.:
Motion of the dipolarization front during a flow burst event observed by Cluster, Geophys. Res. Lett., 29, 3-1–3-4, https://doi.org/10.1029/2002GL015763, 2002. a
Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., Asano, Y., Vörös, Z., Zhang, T. L., Klecker, B., Rème, H., and Balogh, A.:
Spatial scale of high-speed flows in the plasma sheet observed by Cluster, Geophys. Res. Lett., 31, L09804, https://doi.org/10.1029/2004GL019558, 2004. a
Nakamura, R., Retinò, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., Lucek, E. A., Dandouras, I., André, M., and Khotyaintsev, Y.:
Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport, Ann. Geophys., 27, 1743–1754, https://doi.org/10.5194/angeo-27-1743-2009, 2009. a
Newell, P. T. and Gjerloev, J. W.:
Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res.-Space, 116, A12211, https://doi.org/10.1029/2011JA016779, 2011. a, b
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S., and Mende, S. B.:
Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset, J. Geophys. Res.-Space, 116, A09214, https://doi.org/10.1029/2011JA016768, 2011. a
Ohtani, S., Anderson, B. J., Sibeck, D. G., Newell, P. T., Zanetti, L. J., Potemra, T. A., Takahashi, K., Lopez, R. E., Angelopoulos, V., Nakamura, R., Klumpar, D. M., and Russell, C. T.:
A multisatellite study of a pseudo-substorm onset in the near-Earth magnetotail, J. Geophys. Res.-Space, 98, 19355–19367, https://doi.org/10.1029/93JA01421, 1993. a
Palin, L., Jacquey, C., Sauvaud, J.-A., Lavraud, B., Budnik, E., Angelopoulos, V., Auster, U., McFadden, J. P., and Larson, D.:
Statistical analysis of dipolarizations using spacecraft closely separated along Z in the near-Earth magnetotail, J. Geophys. Res.-Space, 117, A09215, https://doi.org/10.1029/2012JA017532, 2012. a
Rowland, W. and Weigel, R. S.:
Intracalibration of particle detectors on a three-axis stabilized geostationary platform, Space Weather, 10, S11002, https://doi.org/10.1029/2012SW000816, 2012.
a
Runov, A., Sergeev, V. A., Angelopoulos, V., Glassmeier, K.-H., and Singer, H. J.:
Diamagnetic oscillations ahead of stopped dipolarization fronts, J. Geophys. Res.-Space, 119, 1643–1657, https://doi.org/10.1002/2013JA019384, 2014. a
Runov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., and Zhou, X.-Z.:
Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles, J. Geophys. Res.-Space, 120, 4369–4383, https://doi.org/10.1002/2015JA021166, 2015. a
Sergeev, V., Nishimura, Y., Kubyshkina, M., Angelopoulos, V., Nakamura, R., and Singer, H.:
Magnetospheric location of the equatorward prebreakup arc, J. Geophys. Res.-Space, 117, A01212, https://doi.org/10.1029/2011JA017154, 2012. a
Sergeev, V. A., Chernyaev, I. A., Angelopoulos, V., Runov, A. V., and Nakamura, R.:
Stopping flow bursts and their role in the generation of the substorm current wedge, Geophys. Res. Lett., 41, 1106–1112, https://doi.org/10.1002/2014GL059309, 2014. a, b
Sibeck, D. G. and Angelopoulos, V.:
THEMIS Science Objectives and Mission Phases, Space Sci. Rev., 141, 35–59, https://doi.org/10.1007/s11214-008-9393-5, 2008. a
Sitnov, M. I., Buzulukova, N., Swisdak, M., Merkin, V. G., and Moore, T. E.:
Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail, Geophys. Res. Lett., 40, 22–27, https://doi.org/10.1029/2012GL054701, 2013. a
Sun, W. J., Fu, S. Y., Parks, G. K., Liu, J., Yao, Z. H., Shi, Q. Q., Zong, Q.-G., Huang, S. Y., Pu, Z. Y., and Xiao, T.:
Field-aligned currents associated with dipolarization fronts, Geophys. Res. Lett., 40, 4503–4508, https://doi.org/10.1002/grl.50902, 2013. a
Weygand, J. M. and Wing, S.:
Comparison of DMSP and SECS region-1 and region-2 ionospheric current boundary, J. Atmos. Sol.-Terr. Phys., 143–144, 8–13, https://doi.org/10.1016/j.jastp.2016.03.002, 2016. a
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H., and Mann, I.:
Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res.-Space, 116, A03305, https://doi.org/10.1029/2010JA016177, 2011. a
Weygand, J. M., Amm, O., Angelopoulos, V., Milan, S. E., Grocott, A., Gleisner, H., and Stolle, C.:
Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays, J. Geophys. Res.-Space, 117, A05325, https://doi.org/10.1029/2011JA017407, 2012. a
Yao, Z. H., Pu, Z. Y., Fu, S. Y., Angelopoulos, V., Kubyshkina, M., Xing, X., Lyons, L., Nishimura, Y., Xie, L., Wang, X. G., Xiao, C. J., Cao, X., Liu, J., Zhang, H., Nowada, M., Zong, Q. G., Guo, R. L., Zhong, J., and Li, J. X.:
Mechanism of substorm current wedge formation: THEMIS observations, Geophys. Res. Lett., 39, L13102, https://doi.org/10.1029/2012GL052055, 2012. a
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric...