Articles | Volume 40, issue 3
Ann. Geophys., 40, 395–406, 2022
Ann. Geophys., 40, 395–406, 2022
Regular paper
15 Jun 2022
Regular paper | 15 Jun 2022

Finite-difference time-domain analysis of ELF radio wave propagation in the spherical Earth–ionosphere waveguide and its validation based on analytical solutions

Volodymyr Marchenko et al.

Related authors

Mesoscale convective systems as a source of electromagnetic signals registered by ground-based system and DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite
Karol Martynski, Jan Blecki, Roman Wronowski, Andrzej Kulak, Janusz Mlynarczyk, and Rafal Iwanski
Ann. Geophys., 39, 321–326,,, 2021
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Electromagnetic wave propagation
Ionospheric Pc1 waves during a storm recovery phase observed by the China Seismo-Electromagnetic Satellite
Xiaochen Gou, Lei Li, Yiteng Zhang, Bin Zhou, Yongyong Feng, Bingjun Cheng, Tero Raita, Ji Liu, Zeren Zhima, and Xuhui Shen
Ann. Geophys., 38, 775–787,,, 2020
Short summary

Cited articles

Araki, S., Nasu, Y., Baba, Y., Rakov, V. A., Saito, M., and Miki, T.: 3-D Finite Difference Time Domain Simulation of Lightning Strikes to the 634-m Tokyo Skytree, Geophys. Res. Lett., 45, 9267–9274,, 2018. 
Bliokh, P. V., Galyuk, Yu. P., Hunninen, E. M., Nickolaenko, A. P., and Rabinovich, L. M.: On resonance phenomena in the Earth-ionosphere cavity, Radiofizika, XX, 501, 1977 (in Russian). 
Bozóki, T., Prácser, E., Sátori, G., Dálya, G., Kapás, K., and Takátsy, J.: Modeling Schumann resonances with schupy, J. Atmos. Sol.-Terr. Phy., 196, 105144,, 2019. 
Cummer, S. A.: Modeling electromagnetic propagation in the Earth-ionosphere waveguide, IEEE T. Antennas Propag., 48, 1420–1429,, 2000. 
Dyrda, D., Kulak, A., Mlynarczyk, J., Ostrowski, M., Kubisz, J., Michalec, A., and Nieckarz, Z.: Application of the Schumann resonance spectral decomposition in characterizing the main African thunderstorm center, J. Geophys. Res.-Atmos., 119, 13338–13349, 2014. 
Short summary
We developed a new approach for validation of the numerical models of electromagnetic wave propagation in the Earth–ionosphere waveguide. We compared the parameters of the waveguide (i.e., characteristic electric and magnetic altitudes, resonance frequencies, phase velocity, and attenuation rate) obtained from numerical models with correspondent analytical calculations. We tested such validation for various conductivity profiles and found good agreement between analytical and numerical results.