Articles | Volume 40, issue 3
https://doi.org/10.5194/angeo-40-379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-379-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The “SafeSpace” database of ULF power spectral density and radial diffusion coefficients: dependencies and application to simulations
Christos Katsavrias
CORRESPONDING AUTHOR
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Afroditi Nasi
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Ioannis A. Daglis
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Hellenic Space Center, Athens, Greece
Sigiava Aminalragia-Giamini
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Space Applications and Research Consultancy (SPARC), Athens, Greece
Nourallah Dahmen
ONERA/Department of Space Environment, Toulouse, France
Constantinos Papadimitriou
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Space Applications and Research Consultancy (SPARC), Athens, Greece
Marina Georgiou
Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
Antoine Brunet
ONERA/Department of Space Environment, Toulouse, France
Sebastien Bourdarie
ONERA/Department of Space Environment, Toulouse, France
Related authors
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
C. Tsironis, A. Anastasiadis, C. Katsavrias, and I. A. Daglis
Ann. Geophys., 34, 171–185, https://doi.org/10.5194/angeo-34-171-2016, https://doi.org/10.5194/angeo-34-171-2016, 2016
M. Georgiou, I. A. Daglis, E. Zesta, G. Balasis, I. R. Mann, C. Katsavrias, and K. Tsinganos
Ann. Geophys., 33, 1431–1442, https://doi.org/10.5194/angeo-33-1431-2015, https://doi.org/10.5194/angeo-33-1431-2015, 2015
Short summary
Short summary
Our study demonstrates a remarkable association between the earthward penetration of ULF waves and radiation belt electron enhancements during four magnetic storms that occurred in 2001. In the past, ULF waves had been observed at unusual depths during rare superstorms. But ULF wave activity, reaching magnetic shells as low as 2, was also observed during relatively intense storms when it played a key role in diffusing electrons radially inward and thereby accelerating them to higher energies.
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
Angélica Sicard, Daniel Boscher, Sébastien Bourdarie, Didier Lazaro, Denis Standarovski, and Robert Ecoffet
Ann. Geophys., 36, 953–967, https://doi.org/10.5194/angeo-36-953-2018, https://doi.org/10.5194/angeo-36-953-2018, 2018
Short summary
Short summary
GREEN (Global Radiation Earth ENvironment) is a new model providing particle fluxes at any location in the radiation belts, for energy between 1 keV
and 10 MeV for electrons and between 1 keV and 800 MeV for protons. This model is composed of global models (AE8 and AP8, and SPM) and
local models (SLOT model, OZONE and IGE-2006 for electrons; OPAL and IGP for protons).
Constantinos Papadimitriou, Georgios Balasis, Ioannis A. Daglis, and Omiros Giannakis
Ann. Geophys., 36, 287–299, https://doi.org/10.5194/angeo-36-287-2018, https://doi.org/10.5194/angeo-36-287-2018, 2018
Short summary
Short summary
Swarm is the fourth Earth Explorer mission of the European Space Agency (ESA), launched on 23 November 2013. The mission provides an opportunity for better knowledge of the near-Earth electromagnetic environment. This study presents an initial attempt to derive an ultra low-frequency (ULF) wave index from low-Earth orbit satellite data. The technique can be potentially used to define a new product from the mission, the Swarm ULF wave index, which would be suitable for space weather applications.
C. Tsironis, A. Anastasiadis, C. Katsavrias, and I. A. Daglis
Ann. Geophys., 34, 171–185, https://doi.org/10.5194/angeo-34-171-2016, https://doi.org/10.5194/angeo-34-171-2016, 2016
M. Georgiou, I. A. Daglis, E. Zesta, G. Balasis, I. R. Mann, C. Katsavrias, and K. Tsinganos
Ann. Geophys., 33, 1431–1442, https://doi.org/10.5194/angeo-33-1431-2015, https://doi.org/10.5194/angeo-33-1431-2015, 2015
Short summary
Short summary
Our study demonstrates a remarkable association between the earthward penetration of ULF waves and radiation belt electron enhancements during four magnetic storms that occurred in 2001. In the past, ULF waves had been observed at unusual depths during rare superstorms. But ULF wave activity, reaching magnetic shells as low as 2, was also observed during relatively intense storms when it played a key role in diffusing electrons radially inward and thereby accelerating them to higher energies.
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
G. Balasis, I. A. Daglis, I. R. Mann, C. Papadimitriou, E. Zesta, M. Georgiou, R. Haagmans, and K. Tsinganos
Ann. Geophys., 33, 1237–1252, https://doi.org/10.5194/angeo-33-1237-2015, https://doi.org/10.5194/angeo-33-1237-2015, 2015
C. Katsavrias, I. A. Daglis, W. Li, S. Dimitrakoudis, M. Georgiou, D. L. Turner, and C. Papadimitriou
Ann. Geophys., 33, 1173–1181, https://doi.org/10.5194/angeo-33-1173-2015, https://doi.org/10.5194/angeo-33-1173-2015, 2015
H. Breuillard, O. Agapitov, A. Artemyev, E. A. Kronberg, S. E. Haaland, P. W. Daly, V. V. Krasnoselskikh, D. Boscher, S. Bourdarie, Y. Zaliznyak, and G. Rolland
Ann. Geophys., 33, 583–597, https://doi.org/10.5194/angeo-33-583-2015, https://doi.org/10.5194/angeo-33-583-2015, 2015
T. M. Giannaros, D. Melas, I. A. Daglis, and I. Keramitsoglou
Nat. Hazards Earth Syst. Sci., 14, 347–358, https://doi.org/10.5194/nhess-14-347-2014, https://doi.org/10.5194/nhess-14-347-2014, 2014
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Radiation belts
Comparison of radiation belt electron fluxes simultaneously measured with PROBA-V/EPT and RBSP/MagEIS instruments
Electron radiation belt safety indices based on the SafeSpace modelling pipeline and dedicated to the internal charging risk
Quantifying the non-linear dependence of energetic electron fluxes in the Earth's radiation belts with radial diffusion drivers
On the semi-annual variation of relativistic electrons in the outer radiation belt
Seasonal dependence of the Earth's radiation belt – new insights
Distribution of Earth's radiation belts' protons over the drift frequency of particles
Outer Van Allen belt trapped and precipitating electron flux responses to two interplanetary magnetic clouds of opposite polarity
Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis
Energetic electron enhancements under the radiation belt (L < 1.2) during a non-storm interval on 1 August 2008
GREEN: the new Global Radiation Earth ENvironment model (beta version)
Van Allen Probes observation of plasmaspheric hiss modulated by injected energetic electrons
Alexandre Winant, Viviane Pierrard, and Edith Botek
Ann. Geophys., 41, 313–325, https://doi.org/10.5194/angeo-41-313-2023, https://doi.org/10.5194/angeo-41-313-2023, 2023
Short summary
Short summary
In this work, we analyzed and compared measurements of electron fluxes in the radiation belts from two instruments with different orbits. In the outer belt, where the altitude difference is the largest between the two instruments, we find that the observations are in good agreement, except during geomagnetic storms, during which fluxes at low altitudes are much lower than at high altitudes. In general, both at low and high altitudes, the correlation between the instruments was found to be good.
Nour Dahmen, Antoine Brunet, Sebastien Bourdarie, Christos Katsavrias, Guillerme Bernoux, Stefanos Doulfis, Afroditi Nasi, Ingmar Sandberg, Constantinos Papadimitriou, Jesus Oliveros Fernandez, and Ioannis Daglis
Ann. Geophys., 41, 301–312, https://doi.org/10.5194/angeo-41-301-2023, https://doi.org/10.5194/angeo-41-301-2023, 2023
Short summary
Short summary
Earth’s space environment is populated with charged particles. The energetic ones are trapped around Earth in radiation belts. Orbiting spacecraft that cross their region can accumulate charges on their internal surfaces, leading to hazardous electrostatic discharges. This paper showcases the SafeSpace safety prototype, which aims to warn satellite operators of probable incoming hazardous events by simulating the dynamics of the electron radiation belts from their origin at the Sun.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Christos Katsavrias, Constantinos Papadimitriou, Sigiava Aminalragia-Giamini, Ioannis A. Daglis, Ingmar Sandberg, and Piers Jiggens
Ann. Geophys., 39, 413–425, https://doi.org/10.5194/angeo-39-413-2021, https://doi.org/10.5194/angeo-39-413-2021, 2021
Short summary
Short summary
The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt has been a debate for over 30 years. Our work shows that it is primarily driven by the Russell–McPherron effect, which indicates that reconnection is responsible not only for the short-scale but also the seasonal variability of the electron belt as well. Moreover, it is more pronounced during the descending phase of the solar cycles and coexists with periods of fast solar wind speed.
Rajkumar Hajra
Ann. Geophys., 39, 181–187, https://doi.org/10.5194/angeo-39-181-2021, https://doi.org/10.5194/angeo-39-181-2021, 2021
Short summary
Short summary
Geomagnetic activity is known to exhibit semi-annual variation with larger occurrences during equinoxes. A similar seasonal feature was reported for relativistic (∼ MeV) electrons throughout the entire outer zone radiation belt. Present work, for the first time reveals that electron fluxes increase with an ∼ 6-month periodicity in a limited L-shell only with large dependence in solar activity cycle. In addition, flux enhancements are not essentially equinoctial.
Alexander S. Kovtyukh
Ann. Geophys., 39, 171–179, https://doi.org/10.5194/angeo-39-171-2021, https://doi.org/10.5194/angeo-39-171-2021, 2021
Short summary
Short summary
This is a continuation of work published in Annales Gephysicae between 2016 and 2020. In this paper, a new method for analyzing experimental data is proposed, calculations are carried out, and a new class of distributions of particles of radiation belts is constructed. As a result of this work, new, finer physical regularities of the structure of the Earth's proton radiation belt and its solar-cyclic variations have been obtained, which cannot be obtained by other methods.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Alla V. Suvorova, Alexei V. Dmitriev, and Vladimir A. Parkhomov
Ann. Geophys., 37, 1223–1241, https://doi.org/10.5194/angeo-37-1223-2019, https://doi.org/10.5194/angeo-37-1223-2019, 2019
Short summary
Short summary
The Earth's radiation belts control the space environment, often affecting the GPS signal propagation and satellite operations. Intense fluxes of energetic particles can penetrate even below the inner belt near the Equator. We analysed electron penetrations under geomagnetic quiet conditions and found in the solar wind an external driver cause. Satellite observations prove that disturbance of the inner belt was associated with impact of plasma jets formed in the solar wind nearby the Earth.
Angélica Sicard, Daniel Boscher, Sébastien Bourdarie, Didier Lazaro, Denis Standarovski, and Robert Ecoffet
Ann. Geophys., 36, 953–967, https://doi.org/10.5194/angeo-36-953-2018, https://doi.org/10.5194/angeo-36-953-2018, 2018
Short summary
Short summary
GREEN (Global Radiation Earth ENvironment) is a new model providing particle fluxes at any location in the radiation belts, for energy between 1 keV
and 10 MeV for electrons and between 1 keV and 800 MeV for protons. This model is composed of global models (AE8 and AP8, and SPM) and
local models (SLOT model, OZONE and IGE-2006 for electrons; OPAL and IGP for protons).
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
Cited articles
Akasofu, S.-I.: Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121–190, https://doi.org/10.1007/BF00218810, 1981. a
Ali, A. F., Malaspina, D. M., Elkington, S. R., Jaynes, A. N., Chan, A. A., Wygant, J., and Kletzing, C. A.: Electric and magnetic radial diffusion coefficients using the Van Allen probes data, J. Geophys. Res.-Space, 121, 9586–9607, https://doi.org/10.1002/2016JA023002, 2016. a, b, c, d
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141, 235–264, https://doi.org/10.1007/s11214-008-9365-9,2008. a
Balasis, G., Daglis, I. A., Georgiou, M., Papadimitriou, C., and Haagmans, R.: Magnetospheric ULF wave studies in the frame of Swarm mission: A time-frequency analysis tool for automated detection of pulsations. In magnetic and electric field observations, Earth Planets Space, 179, 337–381, https://doi.org/10.1007/s11214-012-9950-9, 2013. a
Bentley, S. N., Watt, C. E. J., Owens, M. J., and Rae, I. J.: Ulf wave activity in the magnetosphere: Resolving solar wind interdependencies to identify driving mechanisms, J. Geophys. Res.-Space, 123, 2745–2771, https://doi.org/10.1002/2017JA024740, 2018. a
Bonnell, J. W., Mozer, F. S., Delory, G. T., Hull, A. J., Ergun, R. E., Cully, C. M., Angelopoulos, V., and Harvey P. R.: The Electric Field Instrument (EFI) for THEMIS, Space Sci. Rev., 141, 303–341, https://doi.org/10.1007/s11214-008-9469-2, 2008. a
Bourdarie, S. and O'Brien, T. P.: International Radiation Belt Environment Modelling Library, Space Res. Today, 174, 27–28, https://doi.org/10.1016/j.srt.2009.03.006, 2009. a
Beutier, T. and Boscher, D.: A three-dimensional analysis of the electron radiation belt by the salammbô code, J. Geophys. Res.-Space, 100, 14853, https://doi.org/10.1029/94JA03066, 1995. a
Brautigam, D. H. and Albert, J. M.: Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990 magnetic storm, J. Geophys. Res., 105, 291–309, https://doi.org/10.1029/1999JA900344, 2000. a, b, c
Brautigam, D. H., Ginet, G. P., Albert, J. M., Wygant, J. R., Rowl, D. R., Ling, A., and Bass, J.: CRRES electric field power spectra and radial diffusion coefficients, J. Geophys. Res., 110, A02214, https://doi.org/10.1029/2004JA010612, 2005. a
Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, https://doi.org/10.1029/JA080i031p04204, 1975. a
Califf, S., Li, X., Blum, L., Jaynes, A., Schiller, Q., Zhao, H., Malaspina, D., Hartinger, M., Wolf, R. A., Rowland, D. E., Wygant, J. R., and Bonnell, J. W.: THEMIS measurements of quasi-static electric fields in the inner magnetosphere, J. Geophys. Res.-Space, 119, 9939–9951, https://doi.org/10.1002/2014JA020360, 2015. a
Claudepierre, S. G., Elkington, S. R., and Wiltberger, M.: Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause, J. Geophys. Res., 113, A05218, https://doi.org/10.1029/2007JA012890, 2008. a
Daglis, I. A., Katsavrias, C., and Georgiou, M.: From solar sneezing to killer electrons: outer radiation belt response to solar eruptions, Philos. T. Roy. Soc. A, 377, 20180097, https://doi.org/10.1098/rsta.2018.0097, 2019. a
Dimitrakoudis, S., Mann, I. R., Balasis, G., Papadimitriou, C., Anastasiadis, A., and Daglis, I. A.: Accurately specifying storm-time ULF wave radial diffusion in the radiation belts, Geophys. Res. Lett., 42, 5711–5718, https://doi.org/10.1002/2015GL064707, 2015. a
Drozdov, A. Y., Allison, H. J., Shprits, Y. Y., Elkington, S. R., and Aseev, N. A.: A comparison of radial diffusion coefficients in 1-D and 3-D long-term radiation belt simulations, J. Geophys. Res.-Space, 126, e2020JA028707, https://doi.org/10.1029/2020JA028707, 2021. a, b
Elkington, S. R., Hudson, M. K., and Chan, A. A.: Resonant acceleration and diffusion of outer zone electrons in anasymmetric geomagnetic field, J. Geophys. Res., 108, 1116, https://doi.org/10.1029/2001JA009202, 2003. a
Fälthammar, C.-G.: Effects of time-dependent electric fields on geomagnetically trapped radiation, J. Geophys. Res., 70, 2503–2516, https://doi.org/10.1029/JZ070i011p02503, 1965. a, b, c, d
Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto'aniu, T. M., Ali, A. F., Elkington, S. R., Li, X., Kanekal, S. G., Claudepierre, S. G., Fennell, J. F., Li, W., Thorne, R. M., Kletzing, C. A., Spence, H. E., and Reeves, G. D.: Source and seed populations for relativistic electrons: Their roles in radiation belt changes, J. Geophys. Res.-Space, 120, 7240–7254, https://doi.org/10.1002/2015JA021234, 2015. a
Jaynes, A. N., Ali, A. F., Elkington, S. R., Malaspina, D. M., Baker, D. N., Li, X., Kanekal, S. G., Henderson, M. G., Kletzing, C. A., and Wygant, J. R.: Fast diffusion of ultrarelativistic electrons in the outer radiation belt: 17 March 2015 storm event, Geophys. Res. Lett., 45, 10874–10882, https://doi.org/10.1029/2018GL079786, 2018. a, b, c
Kalliokoski, M. M. H., Kilpua, E. K. J., Osmane, A., Turner, D. L., Jaynes, A. N., Turc, L., George, H., and Palmroth, M.: Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis, Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, 2020. a
Katsavrias, C., Daglis, I. A., Turner, D. L., Sandberg, I., Papadimitriou, C., Georgiou, M., and Balasis, G.: Nonstorm loss of relativistic electrons in the outer radiation belt, Geophys. Res. Lett., 42, 10521–10530, https://doi.org/10.1002/2015GL066773, 2015. a
Katsavrias, C., Daglis, I. A., and Li, W.: On the statistics of acceleration and loss of relativistic electrons in the outer radiation belt: A superposed epoch analysis, J. Geophys. Res.-Space, 124, 2755–2768, https://doi.org/10.1029/2019JA026569, 2019a. a, b
Katsavrias, C., Sandberg, I., Li, W., Podladchikova, O., Daglis, I. A., Papadimitriou, C., Tsironis, C., and Aminalragia-Giamini, S.: Highly relativistic electron flux enhancement during the weak geomagnetic storm of April–May 2017, J. Geophys. Res.-Space, 124, 4402–4413, https://doi.org/10.1029/2019JA026743, 2019b. a
Katsavrias, C., Aminalragia-Giamini, S., Papadimitriou, C., Sandberg, I., Jiggens, P., Daglis, I. A., and Evans, H.: On the interplanetary parameter schemes which drive the variability of the source/seed electron population at GEO, J. Geophys. Res.-Space, 126, e2020JA028939, https://doi.org/10.1029/2020JA028939, 2021. a
Katsavrias, C., Papadimitriou, C., Hillaris, A., and Balasis, G.: Application of Wavelet Methods in the Investigation of Geospace Disturbances: A Review and an Evaluation of the Approach for Quantifying Wavelet Power, Atmosphere, 13, 499, https://doi.org/10.3390/atmos13030499, 2022a. a
Katsavrias, C., Nasi, A., Papadimitriou, C., and Daglis, I. A.: The SafeSpace ULF power spectral density and radial diffusion coefficients database, SafeSpace_DLL [data set],
https://synergasia.uoa.gr/modules/document/?course=PHYS120, last access: 8 June 2022b. a
Kepko, L., Spence, H. E., and Singer, H. J.: Ulf waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29, 39-1–39-4, https://doi.org/10.1029/2001GL014405, 2002. a, b
Kilpua, E. K. J., Hietala, H., Turner, D. L., Koskinen, H. E. J., Pulkkinen, T. I., Rodriguez, J. V., Reeves, G. D., Claudepierre, S. G., and Spence, H. E.: Unraveling the drivers of the storm time radiation belt response, Geophys. Res. Lett., 42, 3076–3084, https://doi.org/10.1002/2015GL063542, 2015. a
Lejosne, S.: Analytic expressions for radial diffusion, J. Geophys. Res.-Space, 124, 4278–4294, https://doi.org/10.1029/2019JA026786, 2019. a, b
Lejosne, S. and Kollmann, P.: Radiation Belt Radial Diffusion at Earth and Beyond, Space Sci. Rev., 216, 19, https://doi.org/10.1007/s11214-020-0642-6, 2020. a
Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Zhang, X.-J., Li, J., Baker, D. N., Reeves, G. D., Spence, H. E., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Blake, J. B., Fennell, J. F., Kanekal, S. G., Angelopoulos, V., Green, J. C., and Goldstein, J.: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations, J. Geophys. Res.-Space, 121, 5520–5536, https://doi.org/10.1002/2016JA022400, 2016. a, b
Liu, S., Yan, Q., Yang, C., Zhou, Q., He, Z., He, Y., Gao, Z., and Xiao, F.: Quantifying extremely rapid flux enhancements of radiation belt relativistic electrons associated with radial diffusion, Geophys. Res. Lett., 45, 1262–1270, https://doi.org/10.1002/2017GL076513, 2018. a
Liu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., Zhang, H., and Shi, Q.: On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS, Geophys. Res. Lett., 43, 1023–1030, https://doi.org/10.1002/2015GL067398, 2016. a, b
Mayaud, P. N.: Planetary Indices Derived From K Indices (Kp, am, and aa), in: Derivation, Meaning, and Use of Geomagnetic Indices, edited by: Mayaud, P. N., AGU Geophysical Monograph Series, https://doi.org/10.1002/9781118663837.ch5, 1980. a
Morlet, J.: Sampling theory and wave propagation, in: Issues in
acoustic signal-image processing and recognition, Springer Berlin
Heidelberg, 233–261, https://doi.org/10.1007/978-3-642-82002-1_12,
1983. a
Morley, S. K., Friedel, R. H. W., Spanswick, E. L., Reeves, G. D., Steinberg, J. T., Koller, J., Cayton, T., and Noveroske, E.: Dropouts of the outer electron radiation belt in response to solar wind stream interfaces: Global positioning system observations, P. Roy. Soc. A, 466, 3329–3350, https://doi.org/10.1098/rspa.2010.0078, 2010. a
Murphy, K. R., Mann, I. R., and Sibeck, D. G.: On the dependence of storm time ULF wave power on magnetopause location. Impacts for ULF wave radial diffusion, Geophys. Res. Lett., 42, 9676–9684, https://doi.org/10.1002/2015GL066592, 2015. a
Nasi, A., Daglis, I., Katsavrias, C., and Li, W.: Interplay of source/seed electrons and wave-particle interactions in producing relativistic electron PSD enhancements in the outer van allen belt, J. Atmos. Sol.-Terr. Phy., 210, 105405, https://doi.org/10.1016/j.jastp.2020.105405, 2020. a
Newell, P. T., Sotirelis, T., Liou, K., Meng, C. I., and Rich, F. J.: A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res.-Space, 112, A01206, https://doi.org/10.1029/2006JA012015, 2007. a
Nosé, M., Iyemori, T., Nakabe, S., Nagai, T., Matsumoto, H., and Goka, T.: ULF pulsations observed by the ETS-VI satellite: Substorm associated azimuthal Pc 4 pulsations on the nightside, Earth Planets Space, 50, 63–80, https://doi.org/10.1186/BF03352087, 1998. a
Olifer, L., Mann, I. R., Ozeke, L. G., Rae, I. J., and Morley, S. K.: On the relative strength of electric and magnetic ulf wave radial diffusion during the March 2015 geomagnetic storm, J. Geophys. Res.-Space, 124, 2569–2587, https://doi.org/10.1029/2018JA026348, 2019. a, b, c, d
Olson, W. P. and Pfitzer, K. A.: Magnetospheric magnetic field
modeling, Annual scientific report, U.S. Department of Energy
Office of Scientific and Technical Information, https://www.osti.gov/biblio/7212748 (last access: 8 June 2022), 1977. a
Reeves, G. D. and Daglis, I. A.: Geospace Magnetic Storms and the Van Allen Radiation Belts, in: Waves, Particles and Storms in Geospace, edited by: Balasis, G., Daglis, I. A., and Mann, I. R., Oxford University Press, ISBN: 9780191015359, 2016.
Reeves, G. D., McAdams, K. L., Friedel, R. H. W., and O'Brien, T. P.: Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30, 1529, https://doi.org/10.1029/2002GL016513, 2003.
Sandhu, J. K., Rae, I. J., Wygant, J. R., Breneman, A. W., Tian, S., Watt, C. E. J., Horne, R. B., Ozeke, L. G., Georgiou, M., and Walach, M.-T.: ULF wave driven radial diffusion during geomagnetic storms: A statistical analysis of Van Allen Probes observations, J. Geophys. Res.-Space, 126, e2020JA029024, https://doi.org/10.1029/2020JA029024, 2021. a, b, c, d
Sarris, T. E., Li, X., Liu, W., Argyriadis, E., Boudouridis, A., and Ergun, R.: Mode number calculations of ULF field-line resonances using ground magnetometers and THEMIS measurements, J. Geophys. Res.-Space, 118, 6986–6997, https://doi.org/10.1002/2012JA018307, 2013. a
Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998.
a, b
Simms, L. E., Pilipenko, V. A., and Engebretson, M. J.: Determining the key drivers of magnetospheric pc5 wave power, J. Geophys. Res., 115, A10241, https://doi.org/10.1029/2009JA015025, 2010. a, b
Takahashi, K., Yumoto, K., Claudepierre, S. G., Sanchez, E. R., Troshichev, O. A., and Janzhura, A. S.: Dependence of the amplitude of pc5-band magnetic field variations on the solar wind and solar activity, J. Geophys. Res., 117, A04207, https://doi.org/10.1029/2011JA017120, 2012. a
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2, 1998. a, b, c
Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res.-Space, 110, A03208, https://doi.org/10.1029/2004JA010798, 2005.
Turner, D. L., Angelopoulos, V., Shprits, Y., Kellerman, A., Cruce, P., and Larson, D.: Radial distributions of equatorial phase space density for outer radiation belt electrons, Geophys. Res. Lett., 39, L09101, https://doi.org/10.1029/2012GL051722, 2012a. a
Turner, D. L., Shprits, Y., Hartinger, M., and Angelopoulos, V.: Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nat. Phys. Lett., 8, 208–212, https://doi.org/10.1038/NPHYS2185, 2012b. a
Short summary
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of relativistic electrons in the outer radiation belt and, consequently, for physics-based models, which provide nowcasting and forecasting of the electron population. In the framework of the "SafeSpace" project, we have created a database of calculated radial diffusion coefficients, and, furthermore, we have exploited it to provide insights for future modelling efforts.
The radial diffusion mechanism is of utmost importance to both the acceleration and loss of...