Articles | Volume 40, issue 3
https://doi.org/10.5194/angeo-40-359-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-359-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Determination of tropical belt widening using multiple GNSS radio occultation measurements
Mohamed Darrag
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Geodynamic Department, National Research Institute of Astronomy and Geophysics-NRIAG, 11421 Helwan, Cairo, Egypt
Shuanggen Jin
CORRESPONDING AUTHOR
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Andrés Calabia
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Aalaa Samy
Geomagnetic and Geoelectric Department, National Research Institute of Astronomy and Geophysics-NRIAG, 11421 Helwan, Cairo, Egypt
Related authors
No articles found.
Linlin Li and Shuanggen Jin
Ann. Geophys., 41, 465–481, https://doi.org/10.5194/angeo-41-465-2023, https://doi.org/10.5194/angeo-41-465-2023, 2023
Short summary
Short summary
We used the spherical harmonic function (SHF) and the local spherical symmetry (LSS) assumption methods to calculate the hourly and daily LEO satellite GPS differential code bias (DCB). The SHF method is more stable and precise than the LSS assumption. The daily DCB estimation is more accurate and stable than the hourly DCB due to more observation data. Hourly DCBs have large changes in one day, mainly be attributed to random errors because these error time series have a normal distribution.
Rasim Shahzad, Munawar Shah, Ayesha Abbas, Amna Hafeez, Andres Calabia, Angela Melgarejo-Morales, and Najam Abbas Naqvi
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-18, https://doi.org/10.5194/angeo-2022-18, 2022
Revised manuscript not accepted
Short summary
Short summary
The ionospheric satellite signals during geomagnetic storms can severely threaten navigation accuracy. We analyzed vertical Total Electron Content (vTEC) variations from the Global Navigation Satellite System at different latitudes around the world during the geomagnetic storms of June 2015 and August 2018. We also analyzed the vTEC from the Swarm satellites and found similar results to the GNSS retrieved vTEC during different phases of both geomagnetic storms.
W. Geng, W. Zhou, and S. Jin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIV-M-3-2021, 63–66, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-63-2021, https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-63-2021, 2021
Qisheng Wang, Shuanggen Jin, and Youjian Hu
Ann. Geophys., 38, 1115–1122, https://doi.org/10.5194/angeo-38-1115-2020, https://doi.org/10.5194/angeo-38-1115-2020, 2020
Short summary
Short summary
In this paper, the receiver differential code bias (DCB) of BDS (BeiDou Navigation Satellite System) is estimated as the changing parameter within 1 d with epoch-by-epoch estimates. The intraday variability of receiver DCB is analyzed from 30 d of Multi-GNSS Experiment observations. In particular, the intraday stability of receiver DCB for the BDS-3 and BDS-2 observations is compared. The result shows that the intraday stability of BDS-3 receiver DCB is better than that of BDS-2 receiver DCB.
Andres Calabia and Shuanggen Jin
Ann. Geophys., 37, 989–1003, https://doi.org/10.5194/angeo-37-989-2019, https://doi.org/10.5194/angeo-37-989-2019, 2019
Short summary
Short summary
Atmospheric drag due to mass density distribution, particularly during storm-time, is of great importance for low Earth orbit precise orbit determination, and for the understanding of magnetosphere–ionosphere–thermosphere phenomena. In this paper, we investigate solar cycle, seasonal, and hemispheric asymmetry dependencies of thermospheric mass density disturbances due to magnetospheric forcing, from 10-year (2003–2013) continuous time series of GRACE estimates.
Ming Shangguan, Wuke Wang, and Shuanggen Jin
Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, https://doi.org/10.5194/acp-19-6659-2019, 2019
Short summary
Short summary
A significant warming in the troposphere and cooling in the stratosphere are found in satellite measurements (2002–2017). The newest ERA5 data are first used for analyzing temperature and ozone trends in the UTLS and show the best quality compared to other reanalyses. According to model simulations, the temperature increase in the troposphere and ozone decrease in the NH stratosphere are mainly connected to a surface warming of the ocean and subsequent changes in atmospheric circulation.
N. B. Avsar, S. Jin, and S. H. Kutoglu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 83–85, https://doi.org/10.5194/isprs-archives-XLII-3-W4-83-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-83-2018, 2018
G. Gurbuz and S. Jin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 239–243, https://doi.org/10.5194/isprs-archives-XLII-3-W4-239-2018, https://doi.org/10.5194/isprs-archives-XLII-3-W4-239-2018, 2018
Junhai Li and Shuanggen Jin
Ann. Geophys., 35, 403–411, https://doi.org/10.5194/angeo-35-403-2017, https://doi.org/10.5194/angeo-35-403-2017, 2017
Short summary
Short summary
In this paper, we discuss the higher-order ionospheric effects on electron density estimation. We estimate the higher-order ionospheric effect carefully and obtain some conclusions. The results show that the second-order ionospheric effects cannot be ignored in precise ionospheric electron density estimation. The azimuth, the solar activity, and the occultation time and position are the main effect factors of the high-order ionospheric delay which we should consider.
S. G. Jin, R. Jin, and D. Li
Ann. Geophys., 34, 259–269, https://doi.org/10.5194/angeo-34-259-2016, https://doi.org/10.5194/angeo-34-259-2016, 2016
Short summary
Short summary
The differential code bias (DCB) is one of main errors for high-precision GNSS TEC estimation and positioning applications. In this paper, daily DCBs of the BeiDou System (BDS) are estimated and investigated from multi-GNSS network observations (2013–2014), which are compared with GPS results. The DCB of BDS satellites is a little less stable than GPS results, especially for GEO satellites. Zero-mean condition effects are not the dominant factor for the higher RMS of BDS satellite DCB.
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Tropospheric dynamics
Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Cited articles
Adam, O., Schneider, T., and Harnik, N.: Role of Changes in Mean
Temperatures versus Temperature Gradients in the Recent Widening of the
Hadley Circulation, J. Clim., 27, 7450–7461, 2014.
Adam, O., Grise, K. M., Staten, P., Simpson, I. R., Davis, S. M., Davis, N. A., Waugh, D. W., Birner, T., and Ming, A.: The TropD software package (v1): standardized methods for calculating tropical-width diagnostics, Geosci. Model Dev., 11, 4339–4357, https://doi.org/10.5194/gmd-11-4339-2018, 2018.
Adler, R., Wang, J., Sapiano, M., Huffman, G., Chiu, L., Xie, P., Ferraro,
R., Schneider, U., Becker, A., Bolvin, D., Nelkin, E., Gu, G., and NOAA CDR
Program: Global Precipitation Climatology Project (GPCP) Climate Data Record (CDR), Version 2.3 (Monthly), National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) [data set], https://doi.org/10.7289/V56971M6, 2016.
AIRS project: Aqua/AIRS L3 Monthly Standard Physical Retrieval (AIRS-only) 1∘ × 1∘ V7.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/UBENJB9D3T2H, 2019a.
AIRS project: Aqua/AIRS L3 Monthly Standard Physical Retrieval (AIRS+AMSU) 1∘ × 1∘ V7.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/KUC55JEVO1SR, 2019b.
Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: The equilibrium response to idealized thermal forcings in a comprehensive GCM: implications for recent tropical expansion, Atmos. Chem. Phys., 12, 4795–4816, https://doi.org/10.5194/acp-12-4795-2012, 2012a.
Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: Recent
Northern Hemisphere tropical expansion primarily driven by black carbon and
tropospheric ozone, Nature, 485, 350–354,
https://doi.org/10.1038/nature11097, 2012b.
Ao, C. O. and Hajj, J. A.: Monitoring the width of the tropical belt with
GPS radio occultation measurements, Geophys. Res. Lett., 40, 6236–6241,
https://doi.org/10.1002/2013GL058203, 2013.
Archer, C. L. and Caldeira, K.: Historical trends in the jet streams,
Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008gl033614,
2008.
Aumann, H., Chahine, M., Gautier, C., Goldberg, M., Kalnay, E., McMillin,
L., Revercomb, H., Rosenkranz, P., Smith, W., Staelin, D., Strow, L., and
Susskind, J.: AIRS/AMSU/HSB on the aqua mission: design, science objectives,
data products, and processing systems, IEEE Trans. Geosci.
Remote Sens., 41, 253–264, https://doi.org/10.1109/tgrs.2002.808356,
2003.
Bai, W., Deng, N., Sun, Y., Du, Q., Xia, J., Wang, X., Meng, X., Zhao, D.,
Liu, C., Tan, G., Liu, Z., and Liu, X.: Applications of GNSS-RO to Numerical
Weather Prediction and Tropical Cyclone Forecast, Atmosphere, 11, 1204,
https://doi.org/10.3390/atmos11111204, 2020.
Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.:
Standardized precipitation evapotranspiration index (SPEI) revisited:
parameter fitting, evapotranspiration models, tools, datasets and drought
monitoring, Int. J. Climatol., 34, 3001–3023,
https://doi.org/10.1002/joc.3887, 2013 (data available at: https://cran.r-project.org/web/packages/SPEI, last access: 15 June 2021).
Calabia, A. and Jin, S.: New modes and mechanisms of thermospheric mass
density variations from GRACE accelerometers, J. Geophys.
Res.-Space, 121, 11191–11212,
https://doi.org/10.1002/2016ja022594, 2016.
Calabia, A. and Jin, S.: New Modes and Mechanisms of Long-Term Ionospheric
TEC Variations From Global Ionosphere Maps, J. Geophys. Res.-Space, 125, e2019JA027703, https://doi.org/10.1029/2019ja027703, 2020.
CDAAC: COSMIC Data Analysis
and Archive Center [data set], https://cdaac-www.cosmic.ucar.edu/, last access: 20 March 2021.
Davis, N. A. and Birner, T.: Seasonal to multidecadal variability of the
width of the tropical belt, J. Geophys Res.-Atmos.,
118, 7773–7787, https://doi.org/10.1002/jgrd.50610, 2013.
Davis, S. M. and Rosenlof, K. H.: A Multidiagnostic Intercomparison of
Tropical-Width Time Series Using Reanalyses and Satellite Observations,
J. Clim., 25, 1061–1078,
https://doi.org/10.1175/jcli-d-11-00127.1, 2012.
Davis, S. M., Hassler, B., and Rosenlof, K. H.: Revisiting ozone
measurements as an indicator of tropical width, Prog. Earth
Planet. Sci., 5, 56, https://doi.org/10.1186/s40645-018-0214-5, 2018.
Foelsche, U., Pirscher, B., Borsche, M., Kirchengast, G., and Wickert, J.:
Assessing the Climate Monitoring Utility of Radio Occultation Data: From
CHAMP to FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci.,
20, 155–170, https://doi.org/10.3319/tao.2008.01.14.01(f3c), 2009.
Fomichev, V. I., Johnson, A. I., de Grandpré, J., Beagley,
S. R., McLandress, C., Semeniuk, K., and Shepherd, T. G.: Response of the
middle atmosphere to CO2 doubling: Results from the Canadian middle
atmosphere model, J. Clim., 20, 1121–1144, 2007.
Fu, Q., Johanson, C. M., Wallace, J. M., and Reichler, T.: Enhanced
mid-latitude tropospheric warming in satellite measurements, Science, 312,
1179, https://doi.org/10.1126/science.1125566, 2006.
Gao, P., Xu, X., and Zhang, X.: Characteristics of the Trends in the Global
Tropopause Estimated From COSMIC Radio Occultation Data, IEEE Trans.
Geosci. Remote Sens., 53, 6813–6822,
https://doi.org/10.1109/tgrs.2015.2449338, 2015.
GMAO (Global Modeling and Assimilation Office): MERRA-2 instM_2d_asm_Nx: 2d, Monthly
mean, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4, Greenbelt,
MD, USA, Goddard Earth Sciences Data and Information Services Center (GES
DISC) [data set], https://doi.org/10.5067/5ESKGQTZG7FO, 2015.
Gnanadesikan, A. and Stouffer, R. J.: Diagnosing atmosphere-ocean general
circulation model errors relevant to the terrestrial biosphere using the
Köppen climate classification, Geophys. Res. Lett., 33, L22701,
https://doi.org/10.1029/2006gl028098, 2006.
Grise, K. M., Davis, S. M., Simpson, I. R., Waugh, D. W., Fu, Q., Allen, R.
J., Rosenlof, K. H., Ummenhofer, C. C., Karnauskas, K. B., Maycock, A. C.,
Quan, X. W., Birner, T., and Staten, P. W.: Recent Tropical Expansion:
Natural Variability or Forced Response?, J. Clim., 32,
1551–1571, https://doi.org/10.1175/jcli-d-18-0444.1, 2019.
Hajj, G. A., Ao, C. O., Iijima, B. A., Kuang, D., Kursinski, E. R.,
Mannucci, A. J., Meehan, T. K., Romans, L. J., de la Torre Juarez, M., and
Yunck, T. P.: CHAMP and SAC-C atmospheric occultation results and
intercomparisons, J. Geophys Res.-Atmos., 109, D06109,
https://doi.org/10.1029/2003jd003909, 2004.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly
high-resolution gridded multivariate climate dataset, Sci Data, 7, 109,
https://doi.org/10.1038/s41597-020-0453-3, 2020 (data available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 17 April 2021).
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
monthly averaged data on pressure levels from 1979 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.6860a573, 2019a.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
monthly averaged data on single levels from 1979 to present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.f17050d7, 2019b.
Ho, S. P., Hunt, D., Steiner, A. K., Mannucci, A. J., Kirchengast, G.,
Gleisner, H., Heise, S., von Engeln, A., Marquardt, C., Sokolovskiy, S.,
Schreiner, W., Scherllin-Pirscher, B., Ao, C., Wickert, J., Syndergaard, S.,
Lauritsen, K. B., Leroy, S., Kursinski, E. R., Kuo, Y. H., and Gorbunov, M.:
Reproducibility of GPS radio occultation data for climate monitoring:
Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008
from six data centers, J. Geophys Res.-Atmos.,
117, D18111, https://doi.org/10.1029/2012jd017665, 2012.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33,
403–439, https://doi.org/10.1029/95RG02097, 1995.
Hu, Y. and Fu, Q.: Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys., 7, 5229–5236, https://doi.org/10.5194/acp-7-5229-2007, 2007.
Hu, Y., Zhou, C., and Liu, J.: Observational evidence for poleward expansion
of the Hadley circulation, Adv. Atmos. Sci., 28, 33–44,
https://doi.org/10.1007/s00376-010-0032-1, 2010.
Hudson, R. D.: Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010, Atmos. Chem. Phys., 12, 7797–7808, https://doi.org/10.5194/acp-12-7797-2012, 2012.
Hudson, R. D., Frolov, A. D., Andrade, M. F., and Follette, M. B.: The Total
Ozone Field Separated into Meteorological Regimes, Part I: Defining the
Regimes, J. Atmos. Sci., 60, 1669–1677, 2003.
Hudson, R. D., Andrade, M. F., Follette, M. B., and Frolov, A. D.: The total ozone field separated into meteorological regimes – Part II: Northern Hemisphere mid-latitude total ozone trends, Atmos. Chem. Phys., 6, 5183–5191, https://doi.org/10.5194/acp-6-5183-2006, 2006.
Jin, S., Cardellach, E., and Xie, F.: GNSS Remote Sensing: Theory, Methods and Applications by Shuanggen Jin, Estel Cardellach and Feiqin Xie, Remote Sensing and Digital Image Processing, Vol. 19, Springer, 2014; ISSN: 1567-320, ISBN: 978-94-007-7481-0, Pure Appl. Geophys., 172, 599–600, https://doi.org/10.1007/s00024-014-0968-7, 2013.
Jin, S. G. and Park, P.: Strain accumulation in South Korea inferred from
GPS measurements, Earth Planet. Space, 58, 529–534, https://doi.org/10.1186/BF03351950, 2006.
Jin, S. G. and Zhang, T.: Terrestrial water storage anomalies associated
with drought in Southwestern USA derived from GPS observations, Surv.
Geophys., 37, 1139–1156, https://doi.org/10.1007/s10712-016-9385-z, 2016.
Jin, S. G., Han, L., and Cho, J.: Lower atmospheric anomalies following the
2008 Wenchuan Earthquake observed by GPS measurements, J. Atmos. Sol.-Terr.
Phys., 73, 810–814, https://doi.org/10.1016/j.jastp.2011.01.023, 2011.
Jin, S. G., Jin, R., and Kutoglu, H.: Positive and negative ionospheric
responses to the March 2015 geomagnetic storm from BDS observations, J.
Geodesy, 91, 613–626, https://doi.org/10.1007/s00190-016-0988-4, 2017.
Kursinski, E. R., Hajj, A. G., Hardy, R. K., Schofield, T. J., and Linfield,
R.: Observing the Earth's atmosphere with radio occultation measurements
using the Global Positioning System, J. Geophys. Res., 102, 23429–23465,
https://doi.org/10.1029/97JD01569, 1997.
Lee, S. and Kim, H.: The Dynamical Relationship between Subtropical and
Eddy-Driven Jets, J. Atmos. Sci., 60, 1490–1503, 2003.
Li, W., Yuan, Y. B., Chai, Y. J., Liou, Y. A., Ou, J. K., and Zhong, S. M.:
Characteristics of the global thermal tropopause derived from multiple radio
occultation measurements, Atmos. Res., 185, 142–157,
https://doi.org/10.1016/j.atmosres.2016.09.013, 2017.
Meng, L., Liu, J., Tarasick, D. W., Randel, W. J., Steiner, A. K.,
Wilhelmsen, H., Wang, L., and Haimberger, L.: Continuous rise of the
tropopause in the Northern Hemisphere over 1980–2020, Sci. Adv.,
7, eabi8065, https://doi.org/10.1126/sciadv.abi8065, 2021.
Mohd Zali, R. and Mandeep, J. S.: The tropopause height analysis in
equatorial region through the GPS-RO. E3S Web of Conferences, 76, 04002.
https://doi.org/10.1051/e3sconf/20197604002, 2019.
Munchak, L. A. and Pan, L. L.: Separation of the lapse rate and the cold
point tropopauses in the tropics and the resulting impact on cloud
top-tropopause relationships, J. Geophys Res.-Atmos.,
119, 7963–7978, https://doi.org/10.1002/2013jd021189, 2014.
Oscar: https://www.wmo-sat.info/oscar/gapanalyses?mission=9, last access:
on 15 August, 2020.
Pilch Kedzierski, R., Matthes, K., and Bumke, K.: New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations, Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, 2020.
Pisoft, P., Sacha, P., Polvani, L. M., Añel, J. A., de la Torre, L.,
Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C., Karlicky, J., Kuchar,
A., Miksovsky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction
caused by increasing greenhouse gases, Environ. Res. Lett.,
16, 064038, https://doi.org/10.1088/1748-9326/abfe2b, 2021.
Santer, B. D., Sausen, R., Wigley, T. M. L., Boyle, J. S., AchutaRao, K.,
Doutriaux, C., Hansen, J. E., Meehl, G. A., Roeckner, E., Ruedy, R.,
Schmidt, G., and Taylor, K. E.: Behavior of tropopause height and
atmospheric temperature in models, reanalyses, and observations: Decadal
changes, J. Geophys. Res., 108, D14002, https://doi.org/10.1029/2002JD002258, 2003.
Santer, B. D., Wigley, T. M. L., Simmons, A. J., Kållberg, P. W., Kelly,
G. A., Uppala, S. M., Ammann, C., Boyle, J. S., Brüggemann, W.,
Doutriaux, C., Fiorino, M., Mears, C., Meehl, G. A., Sausen, R., Taylor, K.
E., Washington, W. M., Wehner, M. F., and Wentz, F. J.: Identification of
anthropogenic climate change using a second-generation reanalysis, J. Geophys Res.-Atmos., 109, D21104,
https://doi.org/10.1029/2004jd005075, 2004.
Sausen, R. and Santer, B. D.: Use of changes in tropopause height to detect
human influences on climate, Meteorol. Z., 12, 131–136,
https://doi.org/10.1127/0941-2948/2003/0012-0131, 2003.
Scherllin-Pirscher, B., Steiner, A. K., Anthes, R. A., Alexander, M. J.,
Alexander, S. P., Biondi, R., Birner, T., Kim, J., Randel, W. J., Son, S.
W., Tsuda, T., and Zeng, Z.: Tropical Temperature Variability in the UTLS:
New Insights from GPS Radio Occultation Observations, J. Clim.,
34, 2813–2838, https://doi.org/10.1175/jcli-d-20-0385.1, 2021.
Schmidt, T., Wickert, J., Beyerle, G., and Reigber, C.: Tropical tropopause
parameters derived from GPS radio occultation measurements with CHAMP,
J. Geophys Res.-Atmos., 109, D13105,
https://doi.org/10.1029/2004jd004566, 2004.
Schmidt, T., Wickert, J., Beyerle, G., and Heise, S.: Global tropopause
height trends estimated from GPS radio occultation data, Geophys.
Res. Lett., 35, L11806, https://doi.org/10.1029/2008gl034012, 2008.
Seidel, D. J. and Randel, W. J.: Variability and trends in the global
tropopause estimated from radiosonde data, J. Geophys. Res.,
111, D21101, https://doi.org/10.1029/2006jd007363, 2006.
Seidel, D. J. and Randel, W. J.: Recent widening of the tropical belt: Evidence from tropopause observations, J. Geophys. Res., 112, D20113, https://doi.org/10.1029/2007jd008861, 2007.
Seidel, D. J., Fu, Q., Randel, W. J., and Reichler, T. J.: Widening of the
tropical belt in a changing climate, Nat. Geosci., 1, 21–24,
https://doi.org/10.1038/ngeo.2007.38, 2007.
Shangguan, M., Wang, W., and Jin, S.: Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data, Atmos. Chem. Phys., 19, 6659–6679, https://doi.org/10.5194/acp-19-6659-2019, 2019.
Son, S. W., Tandon, N. F., and Polvani, L. M.: The fine-scale structure of
the global tropopause derived from COSMIC GPS radio occultation
measurements, J. Geophys. Res., 116, D20113,
https://doi.org/10.1029/2011jd016030, 2011.
Staten, P. W., Lu, J., Grise, K. M., Davis, S. M., and Birner, T.:
Re-examining tropical expansion, Nat. Clim.Change, 8, 768–775,
https://doi.org/10.1038/s41558-018-0246-2, 2018.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B.,
Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate
monitoring and change detection, Radio Sci., 46, RS0D24,
https://doi.org/10.1029/2010rs004614, 2011.
Sun, Y., Liu, C., Tian, Y., Liu, C., Li, W., Zhao, D., Li, F., Qiao, H.,
Wang, X., Du, Q., Bai, W., Xia, J., Cai, Y., Wang, D., Wu, C., and Meng, X.:
The Status and Progress of Fengyun-3e GNOS II Mission for GNSS Remote
Sensing, IEEE International Geoscience and Remote Sensing Symposium, 5181–5184, https://doi.org/10.1109/IGARSS.2019.8899319, 2019.
Tegtmeier, S., Anstey, J., Davis, S., Dragani, R., Harada, Y., Ivanciu, I., Pilch Kedzierski, R., Krüger, K., Legras, B., Long, C., Wang, J. S., Wargan, K., and Wright, J. S.: Temperature and tropopause characteristics from reanalyses data in the tropical tropopause layer, Atmos. Chem. Phys., 20, 753–770, https://doi.org/10.5194/acp-20-753-2020, 2020.
Thuburn, J. and Craig, G. C.: GCM tests of theories for the height of the
tropopause, J. Atmos. Sci., 54, 869– 882, 1997.
Thuburn, J. and Craig, G. C.: Stratospheric influence on tropopause height:
The radiative constraint, J. Atmos. Sci., 57, 17–28, 2000.
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
Multiscalar Drought Index Sensitive to Global Warming: The Standardized
Precipitation Evapotranspiration Index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009jcli2909.1, 2010 (data available at: https://cran.r-project.org/web/packages/SPEI, last access: 15 June 2021).
Waliser, D. E., Shi, Z., Lanzante, J. R., and Oort, A. H.: The Hadley
circulation: assessing NCEP/NCAR reanalysis and sparse in-situ estimates,
Clim. Dynam., 15, 719–735,
https://doi.org/10.1007/s003820050312, 1999.
Watt-Meyer, O., Frierson, D. M. W., and Fu, Q.: Hemispheric Asymmetry of
Tropical Expansion Under CO2 Forcing, Geophys. Res. Lett.,
46, 9231–9240, https://doi.org/10.1029/2019gl083695, 2019.
Wickert, J., Galas, R., Beyerle, G., König, R., and Reigber, C.: GPS
ground station data for CHAMP radio occultation measurements, Phys.
Chem. Earth Pt. A, 26, 503–511,
https://doi.org/10.1016/s1464-1895(01)00092-8, 2001a.
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C.,
Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and
Hocke, K.: Atmosphere sounding by GPS radio occultation: First results from
CHAMP, Geophys. Res. Lett., 28, 3263–3266,
https://doi.org/10.1029/2001gl013117, 2001b.
Wickert, J., Schmidt, T., Beyerle, G., König, R., Reigber, C., and
Jakowski, N.: The Radio Occultation Experiment aboard CHAMP: Operational
Data Analysis and Validation of Vertical Atmospheric Profiles, J.
Meteorol. Soc. Jpn. Ser. II, 82, 381–395,
https://doi.org/10.2151/jmsj.2004.381, 2004.
Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C. Z., Healy, S.
B., Heise, S., Huang, C. Y., Jakowski, N., Köhler, W., Mayer, C.,
Offiler, D., Ozawa, E., Pavelyev, A. G., Rothacher, M., Tapley, B., and
Köhler, C.: GPS Radio Occultation: Results from CHAMP, GRACE and
FORMOSAT-3/COSMIC. Terrestrial, Atmos. Ocean. Sci., 20, 35–50,
https://doi.org/10.3319/tao.2007.12.26.01(f3c), 2009.
WMO: Meteorology A Three-Dimensional Science: Second Session of the Commission for Aerology, WMO Bulletin IV (4), WMO, Geneva, 134–138, 1957.
Wu, X. R. and Jin, S. G.: GNSS-Reflectometry: Forest canopies polarization
scattering properties and modeling, Adv. Space Res., 54, 863–870, https://doi.org/10.1016/j.asr.2014.02.007, 2014.
Xia, P., Ye, S., Jiang, K., and Chen, D.: Estimation and evaluation of COSMIC radio occultation excess phase using undifferenced measurements, Atmos. Meas. Tech., 10, 1813–1821, https://doi.org/10.5194/amt-10-1813-2017, 2017.
Xian, T., Lu, G., Zhang, H., Wang, Y., Xiong, S., Yi, Q., Yang, J., and Lyu,
F.: Implications of GNSS-Inferred Tropopause Altitude Associated with
Terrestrial Gamma-ray Flashes, Remote Sens., 13, 1939,
https://doi.org/10.3390/rs13101939, 2021.
Zhou, Y. P., Xu, K. M., Sud, Y. C., and Betts, A. K.: Recent trends of the
tropical hydrological cycle inferred from Global Precipitation Climatology
Project and International Satellite Cloud Climatology Project data, J.
Geophys. Res., 116, D09101, https://doi.org/10.1029/2010jd015197,
2011.
Short summary
We investigated the possible widening of the tropical belt along with the probable drivers and impacts based on high-accuracy, high-resolution GNSS RO data (2001–2020). The results show that the tropical belt has significant expansion in the Northern Hemisphere, while the Southern Hemisphere has no significant expansion.
We investigated the possible widening of the tropical belt along with the probable drivers and...