Articles | Volume 40, issue 3
https://doi.org/10.5194/angeo-40-327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-327-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of migrating and non-migrating tides of the Extended Unified Model in the mesosphere and lower thermosphere
Matthew J. Griffith
CORRESPONDING AUTHOR
Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
Nicholas J. Mitchell
Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
Atmosphere, Ice and Climate Group, British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, UK
Related authors
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Preprint under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations
Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
Propagation to the upper atmosphere of acoustic-gravity waves from atmospheric fronts in the Moscow region
Sensitivity of GNSS tropospheric gradients to processing options
Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong
An empirical model of the thermospheric mass density derived from CHAMP satellite
Matthew J. Griffith, Shaun M. Dempsey, David R. Jackson, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, https://doi.org/10.5194/angeo-39-487-2021, 2021
Short summary
Short summary
There is great scientific interest in extending atmospheric models upwards to include the upper atmosphere. The Met Office’s Unified Model has recently been successfully extended to include this region. Atmospheric tides are an important driver of atmospheric motion at these greater heights. This paper provides a first comparison of winds and tides produced by the new extended model with meteor radar observations, comparing key tidal properties and discussing their similarities and differences.
Marion Heublein, Patrick Erik Bradley, and Stefan Hinz
Ann. Geophys., 38, 179–189, https://doi.org/10.5194/angeo-38-179-2020, https://doi.org/10.5194/angeo-38-179-2020, 2020
Yuliya Kurdyaeva, Sergey Kulichkov, Sergey Kshevetskii, Olga Borchevkina, and Elena Golikova
Ann. Geophys., 37, 447–454, https://doi.org/10.5194/angeo-37-447-2019, https://doi.org/10.5194/angeo-37-447-2019, 2019
Short summary
Short summary
To simulate the vertical propagation of atmospheric waves, experimental data on pressure variations at the Earth's surface are used. These data are associated with the meteorological source. The simulation results have allowed for the first time estimates of the amplitudes of temperature wave disturbances in the upper atmosphere caused by waves from the atmospheric front. The simulations have been performed using the Lomonosov supercomputer.
Michal Kačmařík, Jan Douša, Florian Zus, Pavel Václavovic, Kyriakos Balidakis, Galina Dick, and Jens Wickert
Ann. Geophys., 37, 429–446, https://doi.org/10.5194/angeo-37-429-2019, https://doi.org/10.5194/angeo-37-429-2019, 2019
Short summary
Short summary
We provide an analysis of processing setting impacts on tropospheric gradients estimated from GNSS observation processing. These tropospheric gradients are related to water vapour distribution in the troposphere and therefore can be helpful in meteorological applications.
Zhaohui Xiong, Bao Zhang, and Yibin Yao
Ann. Geophys., 37, 25–36, https://doi.org/10.5194/angeo-37-25-2019, https://doi.org/10.5194/angeo-37-25-2019, 2019
Short summary
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Cited articles
Akmaev, R.: Whole atmosphere modeling: Connecting terrestrial and space
weather, Rev. Geophys., 49, RG4004, https://doi.org/10.1029/2011rg000364, 2011. a, b
Akmaev, R. A., Fuller-Rowell, T., Wu, F., Forbes, J., Zhang, X., Anghel, A.,
Iredell, M., Moorthi, S., and Juang, H.-M.: Tidal variability in the lower
thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with
observations from TIMED, Geophys. Res. Lett., 35, L03810,
https://doi.org/10.1029/2007gl032584, 2008. a
Baldwin, M., Birner, T., Brasseur, G., Burrows, J., Butchart, N., Garcia, R.,
Geller, M., Gray, L., Hamilton, K., Harnik, N., Hegglin, M., Langematz, U.,
Robock, A., Sato, K., and Scaife, A.: 100 Years of Progress in Understanding
the Stratosphere and Mesosphere, Meteorol. Monogr., 59, 27.1–27.62,
https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0003.1, 2019. a
Beagley, S. R., McLandress, C., Fomichev, V. I., and Ward, W. E.: The extended
Canadian middle atmosphere model, Geophys. Res. Lett., 27,
2529–2532, https://doi.org/10.1029/1999gl011233, 2000. a
Becker, E.: Mean-flow effects of thermal tides in the mesosphere and lower
thermosphere, J. Atmos. Sci., 74, 2043–2063,
https://doi.org/10.1175/jas-d-16-0194.1, 2017. a
Becker, E. and Vadas, S. L.: Secondary gravity waves in the winter mesosphere:
Results from a high-resolution global circulation model, J.
Geophys. Res.-Atmos., 123, 2605–2627,
https://doi.org/10.1002/2017jd027460, 2018. a
Becker, E. and Vadas, S. L.: Explicit Global Simulation of Gravity Waves in the
Thermosphere, J. Geophys. Res.-Space, 125, e2020JA028034,
https://doi.org/10.1029/2020ja028034, 2020. a, b
Borchert, S., Zhou, G., Baldauf, M., Schmidt, H., Zängl, G., and Reinert, D.: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0), Geosci. Model Dev., 12, 3541–3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019. a
Chang, L., Ward, W., Palo, S., Du, J., Wang, D.-Y., Liu, H.-L., Hagan, M.,
Portnyagin, Y., Oberheide, J., Goncharenko, L., Nakamura, T., Hoffmann, P.,
Singer, W., Batista, P., Clemesha, B., Manson, A., Riggin, D., She, C.-Y.,
Tsuda, T., and Yuan, T.: Comparison of diurnal tide in models and
ground-based observations during the 2005 equinox CAWSES tidal campaign,
J. Atmos. Sol.-Terr. Phys., 78, 19–30,
https://doi.org/10.1016/j.jastp.2010.12.010, 2012. a, b, c, d
Davis, R., Du, J., Smith, A., Ward, W., and Mitchell, N.: The diurnal and
semidiurnal tides over Ascension Island (8∘ S, 14∘ W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013. a, b, c
Dempsey, S., Hindley, N., Moffat-Griffin, T., Wright, C., Smith, A., Du, J.,
and Mitchell, N.: Winds and Tides of the Antarctic Mesosphere and Lower
Thermosphere: One Year of Meteor-Radar Observations Over Rothera (68∘ S,
68∘ W) and Comparisons with WACCM and eCMAM, J. Atmos.
Sol.-Terr. Phys., 212, 105510, https://doi.org/10.1016/j.jastp.2020.105510, 2021. a, b, c, d, e, f
Dhadly, M. S., Emmert, J. T., Drob, D. P., McCormack, J. P., and Niciejewski,
R. J.: Short-Term and Interannual Variations of Migrating Diurnal and
Semidiurnal Tides in the Mesosphere and Lower Thermosphere, J.
Geophys. Res.-Space, 123, 7106–7123,
https://doi.org/10.1029/2018JA025748, 2018. a, b
Ekanayake, E., Aso, T., and Miyahara, S.: Background wind effect on propagation
of nonmigrating diurnal tides in the middle atmosphere, J. Atmos. Sol.-Terr. Phys., 59, 401–429,
https://doi.org/10.1016/S1364-6826(96)00012-0, 1997. a
England, S.: A review of the effects of non-migrating atmospheric tides on the
Earth’s low-latitude ionosphere, Space Sci. Rev., 168, 211–236,
https://doi.org/10.1007/s11214-011-9842-4, 2012. a
Fiedler, J., Baumgarten, G., and von Cossart, G.: Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR, Ann. Geophys., 23, 1175–1181, https://doi.org/10.5194/angeo-23-1175-2005, 2005. a
Fleming, E. L., Chandra, S., Barnett, J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind and geopotential height as functions of
latitude, Adv. Space Res., 10, 11–59,
https://doi.org/10.1016/0273-1177(90)90386-e, 1990. a
Forbes, J. and Hagan, M.: Diurnal propagating tide in the presence of mean
winds and dissipation: A numerical investigation, Planet. Space
Sci., 36, 579–590, https://doi.org/10.1016/0032-0633(88)90027-X, 1988. a
Forbes, J., Hagan, M., and Zhang, X.: Seasonal cycle of nonmigrating diurnal
tides in the MLT region due to tropospheric heating rates from the NCEP/NCAR
Reanalysis Project, Adv. Space Res., 39, 1347–1350,
https://doi.org/10.1016/j.asr.2003.09.076, 2007. a
Forbes, J. M. and Wu, D.: Solar tides as revealed by measurements of mesosphere
temperature by the MLS experiment on UARS, J. Atmos.
Sci., 63, 1776–1797, https://doi.org/10.1175/jas3724.1, 2006. a, b
Forbes, J. M., Zhang, X., Talaat, E. R., and Ward, W.: Nonmigrating diurnal
tides in the thermosphere, J. Geophys. Res.-Space,
108, 1033, https://doi.org/10.1029/2002ja009262, 2003. a, b
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106,
2003. a
Fritts, D. C., Vadas, S. L., Riggin, D. M., Abdu, M. A., Batista, I. S., Takahashi, H., Medeiros, A., Kamalabadi, F., Liu, H.-L., Fejer, B. G., and Taylor, M. J.: Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx), Ann. Geophys., 26, 3235–3252, https://doi.org/10.5194/angeo-26-3235-2008, 2008. a
Fujiwara, H. and Miyoshi, Y.: Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM, Ann. Geophys., 28, 427–437, https://doi.org/10.5194/angeo-28-427-2010, 2010. a
Fuller-Rowell, T., Akmaev, R., Wu, F., Anghel, A., Maruyama, N., Anderson, D.,
Codrescu, M., Iredell, M., Moorthi, S., Juang, H., and Hou, Y.: Impact of
terrestrial weather on the upper atmosphere, Geophys. Res. Lett.,
35, https://doi.org/10.1029/2007gl032911, 2008. a
Goncharenko, L., Coster, A., Chau, J., and Valladares, C.: Impact of sudden
stratospheric warmings on equatorial ionization anomaly, J. Geophys. Res.-Space, 115, A00G07, https://doi.org/10.1029/2010ja015400, 2010. a
Griffin, D. and Thuburn, J.: Numerical effects on vertical wave propagation in
deep-atmosphere models, Q. J. Roy. Meteorol.
Soc., 144, 567–580, https://doi.org/10.1002/qj.3229, 2018. a, b
Griffith, M. J., Dempsey, S. M., Jackson, D. R., Moffat-Griffin, T., and Mitchell, N. J.: Winds and tides of the Extended Unified Model in the mesosphere and lower thermosphere validated with meteor radar observations, Ann. Geophys., 39, 487–514, https://doi.org/10.5194/angeo-39-487-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Hagan, M. and Forbes, J. M.: Migrating and nonmigrating semidiurnal tides in
the upper atmosphere excited by tropospheric latent heat release, J.
Geophys. Res.-Space, 108, 1062, https://doi.org/10.1029/2002ja009466, 2003. a
Hagan, M. and Roble, R.: Modeling diurnal tidal variability with the National
Center for Atmospheric Research
thermosphere-ionosphere-mesosphere-electrodynamics general circulation model,
J. Geophys. Res.-Space, 106, 24869–24882,
https://doi.org/10.1029/2001ja000057, 2001. a, b
Hagan, M., Burrage, M. D., Forbes, J., Hackney, J., Randel, W., and Zhang, X.:
GSWM-98: Results for migrating solar tides, J. Geophys. Res.-Space, 104, 6813–6827, https://doi.org/10.1029/1998JA900125, 1999. a
Hagan, M., Maute, A., Roble, R., Richmond, A., Immel, T., and England, S.:
Connections between deep tropical clouds and the Earth's ionosphere,
Geophys. Res. Lett., 34, L20109, https://doi.org/10.1029/2007gl030142, 2007. a
Hibbins, R., Espy, P. J., Orsolini, Y., Limpasuvan, V., and Barnes, R.:
SuperDARN observations of semidiurnal tidal variability in the MLT and the
response to sudden stratospheric warming events, J. Geophys.
Res.-Atmos., 124, 4862–4872, https://doi.org/10.1029/2018jd030157, 2019. a, b, c, d
Hickey, M., Walterscheid, R., and Schubert, G.: Gravity wave heating and
cooling of the thermosphere: Sensible heat flux and viscous flux of kinetic
energy, J. Geophys. Res.-Space, 116, A12326,
https://doi.org/10.1029/2011ja016792, 2011. a
Iimura, H., Fritts, D., Wu, Q., Skinner, W., and Palo, S.: Nonmigrating
semidiurnal tide over the Arctic determined from TIMED Doppler Interferometer
wind observations, J. Geophys. Res.-Atmos., 115, D06109,
https://doi.org/10.1029/2009jd012733, 2010. a, b, c
Immel, T., Sagawa, E., England, S., Henderson, S., Hagan, M., Mende, S., Frey,
H., Swenson, C., and Paxton, L.: Control of equatorial ionospheric morphology
by atmospheric tides, Geophys. Res. Lett., 33, L15108,
https://doi.org/10.1029/2006gl026161, 2006. a
Jackson, D., Bruinsma, S., Negrin, S., Stolle, C., Budd, C., Gonzalez, R.,
Down, E., Griffin, D., Griffith, M., Kervalishvili, G., and Arenillas, D.:
The Space Weather Atmosphere Models and Indices (SWAMI) Project: Overview and
first results, J. Space Weath. Space Clim., 10, 18,
https://doi.org/10.1051/swsc/2020019, 2020. a
Jackson, D. R., Fuller-Rowell, T. J., Griffin, D. J., Griffith, M. J., Kelly,
C. W., Marsh, D. R., and Walach, M.-T.: Future directions for whole
atmosphere modeling: Developments in the context of space weather, Space
Weather, 17, 1342–1350, https://doi.org/10.1029/2019SW002267, 2019. a
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa,
H.: Response of migrating tides to the stratospheric sudden warming in 2009
and their effects on the ionosphere studied by a whole atmosphere-ionosphere
model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res.-Space, 117, A10323, https://doi.org/10.1029/2012ja017650, 2012. a
Jones Jr., M., Drob, D. P., Siskind, D. E., McCormack, J. P., Maute, A.,
McDonald, S. E., and Dymond, K. F.: Evaluating Different Techniques for
Constraining Lower Atmospheric Variability in an Upper Atmosphere General
Circulation Model: A Case Study During the 2010 Sudden Stratospheric Warming,
J. Adv. Model. Earth Syst., 10, 3076–3102,
https://doi.org/10.1029/2018MS001440, 2018. a
Klimenko, M. V., Klimenko, V. V., Bessarab, F. S., Sukhodolov, T. V., Vasilev,
P. A., Karpov, I. V., Korenkov, Y. N., Zakharenkova, I. E., Funke, B., and
Rozanov, E. V.: Identification of the mechanisms responsible for anomalies in
the tropical lower thermosphere/ionosphere caused by the January 2009 sudden
stratospheric warming, J. Space Weath. Space Clim., 9, A39,
https://doi.org/10.1051/swsc/2019037, 2019. a
Li, X., Wan, W., Ren, Z., Liu, L., and Ning, B.: The variability of
nonmigrating tides detected from TIMED/SABER observations, J. Geophys. Res.-Space, 120, 10793–10808,
https://doi.org/10.1002/2015JA021577, 2015. a, b
Liu, G., Janches, D., Lieberman, R. S., Moffat-Griffin, T., Fritts, D. C., and
Mitchell, N. J.: Coordinated Observations of 8-and 6-hr Tides in the
Mesosphere and Lower Thermosphere by Three Meteor Radars Near 60∘ S
Latitude, Geophys. Res. Lett., 47, e2019GL086629,
https://doi.org/10.1029/2019GL086629, 2020. a
Liu, H.-L.: Variability and predictability of the space environment as related
to lower atmosphere forcing, Space Weather, 14, 634–658,
https://doi.org/10.1002/2016SW001450, 2016. a, b, c
Liu, H.-L., Foster, B., Hagan, M., McInerney, J., Maute, A., Qian, L.,
Richmond, A., Roble, R., Solomon, S., Garcia, R., and Kinnison, D.:
Thermosphere extension of the whole atmosphere community climate model,
J. Geophys. Res.-Space, 115, A12302,
https://doi.org/10.1029/2010JA015586, 2010. a, b
Liu, H.-L., Bardeen, C., Foster, B., Lauritzen, P., Liu, J., Lu, G., Marsh, D.,
Maute, A., McInerney, J., Pedatella, N., and Qian, L.: Development and
validation of the Whole Atmosphere Community Climate Model with thermosphere
and ionosphere extension (WACCM-X 2.0), J. Adv. Model. Earth
Syst., 10, 381–402, https://doi.org/10.1002/2017ms001232, 2018. a, b
Medvedev, A. and Klaassen, G.: Thermal effects of saturating gravity waves in
the atmosphere, J. Geophys. Res.-Atmos., 108,
ACL 4-1–ACL 4-18, https://doi.org/10.1029/2002jd002504, 2003. a
Meraner, K. and Schmidt, H.: Transport of nitrogen oxides through the winter
mesopause in HAMMONIA, J. Geophys. Res.-Atmos., 121,
2556–2570, https://doi.org/10.1002/2015jd024136, 2016. a
Mitchell, N., Pancheva, D., Middleton, H., and Hagan, M.: Mean winds and tides
in the Arctic mesosphere and lower thermosphere, J. Geophys. Res.-Space, 107, SIA 2-1–SIA 2-14,
https://doi.org/10.1029/2001ja900127, 2002. a
Miyahara, S. and Forbes, J. M.: Interactions between gravity waves and the
diurnal tide in the mesosphere and lower thermosphere, J.
Meteorol. Soc. Jpn. Ser. II, 69, 523–531,
https://doi.org/10.2151/jmsj1965.69.5_523, 1991. a
Miyoshi, Y. and Fujiwara, H.: Gravity waves in the thermosphere simulated by a
general circulation model, J. Geophys. Res.-Atmos., 113, D01101,
https://doi.org/10.1029/2007jd008874, 2008. a
Miyoshi, Y. and Yiğit, E.: Impact of gravity wave drag on the thermospheric circulation: implementation of a nonlinear gravity wave parameterization in a whole-atmosphere model, Ann. Geophys., 37, 955–969, https://doi.org/10.5194/angeo-37-955-2019, 2019. a
Mukhtarov, P., Pancheva, D., and Andonov, B.: Global structure and seasonal and
interannual variability of the migrating diurnal tide seen in the SABER/TIMED
temperatures between 20 and 120 km, J. Geophys. Res.-Space, 114, A02309, https://doi.org/10.1029/2008JA013759, 2009. a
Murphy, D., French, W., and Vincent, R.: Long-period planetary waves in the
mesosphere and lower thermosphere above Davis, Antarctica, J.
Atmos. Sol.-Terr. Phys., 69, 2118–2138,
https://doi.org/10.1016/j.jastp.2007.06.008, 2007. a
Murphy, D., Aso, T., Fritts, D., Hibbins, R., McDonald, A., Riggin, D.,
Tsutsumi, M., and Vincent, R.: Source regions for Antarctic MLT non-migrating
semidiurnal tides, Geophys. Res. Lett., 36, L09805,
https://doi.org/10.1029/2008gl037064, 2009. a
Oberheide, J., Wu, Q., Killeen, T., Hagan, M., and Roble, R.: A climatology of
nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind
data, J. Atmos. Sol.-Terr. Phys., 69, 2203–2218,
https://doi.org/10.1016/j.jastp.2007.05.010, 2007. a, b, c
Oberheide, J., Forbes, J., Häusler, K., Wu, Q., and Bruinsma, S.:
Tropospheric tides from 80 to 400 km: Propagation, interannual variability,
and solar cycle effects, J. Geophys. Res.-Atmos., 114, D00I05,
https://doi.org/10.1029/2009jd012388, 2009. a
Pancheva, D., Mukhtarov, P., and Andonov, B.: Global structure, seasonal and
interannual variability of the eastward propagating tides seen in the
SABER/TIMED temperatures (2002–2007), Adv. Space Res., 46,
257–274, https://doi.org/10.5194/angeo-27-687-2009, 2010. a
Pancheva, D., Mukhtarov, P., Hall, C., Smith, A., and Tsutsumi, M.: Climatology
of the short-period (8-h and 6-h) tides observed by meteor radars at
Tromsø and Svalbard, J. Atmos. Sol.-Terr. Phys.,
212, 105513, https://doi.org/10.1016/j.jastp.2020.105513, 2021. a
Pogoreltsev, A.: Generation of normal atmospheric modes by stratospheric
vacillations, Izvestiya, Atmos. Ocean. Phys., 43, 423–435,
https://doi.org/10.1134/s0001433807040044, 2007. a
Pogoreltsev, A., Vlasov, A., Fröhlich, K., and Jacobi, C.: Planetary waves
in coupling the lower and upper atmosphere, J. Atmos.
Sol.-Terr. Phys., 69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014,
2007. a, b
Pokhotelov, D., Becker, E., Stober, G., and Chau, J. L.: Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations, Ann. Geophys., 36, 825–830, https://doi.org/10.5194/angeo-36-825-2018, 2018. a, b
Roble, R. and Ridley, E.: A thermosphere-ionosphere-mesosphere-electrodynamics
general circulation model (TIME-GCM): Equinox solar cycle minimum simulations
(30–500 km), Geophys. Res. Lett., 21, 417–420,
https://doi.org/10.1029/93GL03391, 1994. a
Scaife, A., Butchart, N., Warner, C., and Swinbank, R.: Impact of a spectral
gravity wave parameterization on the stratosphere in the Met Office Unified
Model, J. Atmos. Sci., 59, 1473–1489,
https://doi.org/10.1175/1520-0469(2002)059<1473:ioasgw>2.0.co;2,
2002. a
Schmidt, H., Brasseur, G., Charron, M., Manzini, E., Giorgetta, M., Diehl, T.,
Fomichev, V., Kinnison, D., Marsh, D., and Walters, S.: The HAMMONIA
chemistry climate model: Sensitivity of the mesopause region to the 11-year
solar cycle and CO2 doubling, J. Clim., 19, 3903–3931,
https://doi.org/10.1175/jcli3829.1, 2006. a
Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 33,
1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012. a
Smith, A. K., Pancheva, D. V., Mitchell, N. J., Marsh, D. R., Russell III,
J. M., and Mlynczak, M. G.: A link between variability of the semidiurnal
tide and planetary waves in the opposite hemisphere, Geophys. Res. Lett., 34, L07809, https://doi.org/10.1029/2006gl028929, 2007. a
Suvorova, E. and Pogoreltsev, A.: Modeling of nonmigrating tides in the middle
atmosphere, Geomagn. Aeronomy, 51, 105–115,
https://doi.org/10.1134/s0016793210061039, 2011. a
Vitharana, A., Zhu, X., Du, J., Oberheide, J., and Ward, W. E.: Statistical
Modeling of Tidal Weather in the Mesosphere and Lower Thermosphere, J. Geophys. Res.-Atmos., 124, 9011–9027,
https://doi.org/10.1029/2019jd030573, 2019. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a, b, c, d, e, f
Warner, C. and McIntyre, M.: An ultrasimple spectral parameterization for
nonorographic gravity waves, J. Atmos. Sci., 58,
1837–1857,
https://doi.org/10.1175/1520-0469(2001)058<1837:auspfn>2.0.co;2,
2001. a, b, c
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J.
Roy. Meteorol. Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235,
2014. a
Wu, Q., Ortland, D., Killeen, T., Roble, R., Hagan, M., Liu, H.-L., Solomon,
S., Xu, J., Skinner, W., and Niciejewski, R.: Global distribution and
interannual variations of mesospheric and lower thermospheric neutral wind
diurnal tide: 1. Migrating tide, J. Geophys. Res.-Space, 113, https://doi.org/10.1029/2007JA012542, 2008a.
a, b, c, d, e
Wu, Q., Ortland, D., Killeen, T., Roble, R., Hagan, M., Liu, H.-L., Solomon,
S., Xu, J., Skinner, W., and Niciejewski, R.: Global distribution and
interannual variations of mesospheric and lower thermospheric neutral wind
diurnal tide: 2. Nonmigrating tide, J. Geophys. Res.-Space, 113, A05309, https://doi.org/10.1029/2007JA012543, 2008b. a, b, c, d, e, f
Yamashita, C., Liu, H.-L., and Chu, X.: Responses of mesosphere and lower
thermosphere temperatures to gravity wave forcing during stratospheric sudden
warming, Geophys. Res. Lett., 37, L09803, https://doi.org/10.1029/2009GL042351, 2010. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the thermosphere by
internal gravity waves, Geophys. Res. Lett., 36, L14807,
https://doi.org/10.1029/2009gl038507, 2009. a
Yiğit, E. and Medvedev, A. S.: Internal wave coupling processes in
Earth’s atmosphere, Adv. Space Res., 55, 983–1003,
https://doi.org/10.1016/j.asr.2014.11.020, 2015. a, b
Yiğit, E. and Medvedev, A. S.: Influence of parameterized small-scale
gravity waves on the migrating diurnal tide in Earth's thermosphere, J. Geophys. Res.-Space, 122, 4846–4864,
https://doi.org/10.1002/2017ja024089, 2017. a, b
Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., and Harris,
M. J.: Modeling the effects of gravity wave momentum deposition on the
general circulation above the turbopause, J. Geophys. Res.-Atmos., 114, D07101, https://doi.org/10.1029/2008jd011132, 2009. a, b
Yiğit, E., Knížová, P. K., Georgieva, K., and Ward, W.: A
review of vertical coupling in the Atmosphere–Ionosphere system: Effects of
waves, sudden stratospheric warmings, space weather, and of solar activity,
J. Atmos. Sol.-Terr. Phys., 141, 1–12,
https://doi.org/10.1016/j.jastp.2016.02.011, 2016. a, b
Yiğit, E., Medvedev, A. S., and Ern, M.: Effects of Latitude-Dependent
Gravity Wave Source Variations on the Middle and Upper Atmosphere, Front. Astron. Space Sci., 7, 614018, https://doi.org/10.3389/fspas.2020.614018, 2021. a, b
Zhang, X., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E.,
Mertens, C. J., and Mlynczak, M. G.: Monthly tidal temperatures 20–120 km
from TIMED/SABER, J. Geophys. Res.-Space, 111, A10S08,
https://doi.org/10.1029/2005JA011504, 2006. a, b, c
Short summary
There is great scientific interest in extending atmospheric models, such as the Met Office’s Unified Model, upwards to include the upper atmosphere. Atmospheric tides are an important driver of circulation at these greater heights. This study provides a first in-depth analysis of the migrating and non-migrating components of these tides, examining important tidal properties. Our results show that the ExUM produces a rich spectrum of spatial components, with significant non-migrating components.
There is great scientific interest in extending atmospheric models, such as the Met Office’s...