Camporeale, E., Delzanno, G. L., and Colestock, P.:
Lower hybrid to whistler mode conversion on a density striation, JGR, 117, A10315,
https://doi.org/10.1029/2012JA017726, 2012.
a
Caprioli, D., Pop, A.-R., and Spitkovsky, A.:
Simulations and theory of ion injection at non-relativistic collisionless shocks, Astrophys. J., 798, L28,
https://doi.org/10.1088/2041-8205/798/2/l28, 2014.
a
Daubechies, I.:
The wavelet transform, time-frequency localization and signal analysis, IEEE Transactions on Information Theory, 36, 961–1005,
https://doi.org/10.1109/18.57199, 1990.
a
Daughton, W.:
Electromagnetic properties of the lower- hybrid drift instability in a thin current sheet, Phys. Plasmas, 10, 3103,
https://doi.org/10.1063/1.1594724, 2003.
a,
b
Drake, J. F., Huba, J. D., and Gladd, N. T.:
Stabilization of lower-hybrid-drift instability by finite-beta plasmas, Phys. Fluids, 26, 2247,
https://doi.org/10.1063/1.864380, 1983.
a,
b
Eliasson, B. and Papadopoulos, K.:
Numerical study of mode conversion between lower hybrid and whistler waves on short-scale density striations, J. Geophys. Res., 113, A09315,
https://doi.org/10.1029/2008JA013261, 2008.
a
Ergun, R. E., Tucker, S., Westfall, J., Goodrich, K. A., Malaspina, D. M., Summers, D., Wallace, J., Karlsson, M., Mack, J., Brennan, N., Pyke, B., Withnell, P., Torbert, R., Macri, J., Rau, D., Dors, I., Needell, J., Lindqvist, P.-A., Olsson, G., and Cully, C. M.:
The Axial Double Probe and Fields Signal Processing for the MMS Mission, Space Sci. Rev., 199, 167–188,
https://doi.org/10.1007/s11214-014-0115-x, 2016.
a
Forslund, D., Morse, R., Nielson, C., and Fu, J.:
Electron cyclotron drift instability and turbulence, Phys. Fluids, 15, 1303,
https://doi.org/10.1063/1.1694082, 1972.
a,
b
Friedman, H. W., Linson, L. M., Patrick, R. M., and Petschek, H. E.:
Collisionless Shocks in Plasmas, Annu. Rev. Fluid Mech., 3, 63–88,
https://doi.org/10.1146/annurev.fl.03.010171.000431, 1971.
a
Fuselier, S. A.:
Suprathermal Ions Upstream and Downstream from the Earth's Bow Shock, in: Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, edited by: Engebretson, M. J., Takahashi, K., and Scholer, M.,
https://doi.org/10.1029/GM081p0107, 107–119, 1994.
a
Gary, S. P.:
Theory of space plasma microinstabilities, Cambridge University Press, 1993.
a,
b
Johlander, A., Schwartz, S. J., Vaivads, A., Khotyaintsev, Y. V., Gingell, I., Peng, I. B., Markidis, S., Lindqvist, P.-A., Ergun, R. E., Marklund, G. T., Plaschke, F., Magnes, W., Strangeway, R. J., Russell, C. T., Wei, H., Torbert, R. B., Paterson, W. R., Gershman, D. J., Dorelli, J. C., Avanov, L. A., Lavraud, B., Saito, Y., Giles, B. L., Pollock, C. J., and Burch, J. L.:
Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft, Phys. Rev. Lett., 117, 165101,
https://doi.org/10.1103/PhysRevLett.117.165101, 2016.
a
Gosling, J. T. and Thomsen, M. F.:
Specularly reflected ions, shock foot thicknesses, and shock velocity determinations in space, J. Geophys. Res.-Space, 90, 9893–9896,
https://doi.org/10.1029/JA090iA10p09893, 1985.
a
Hellinger, P., Travnicek, P., Lembége, B., and Savoini, P.:
Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations, Geophys. Res. Lett., 34, L14109,
https://doi.org/10.1029/2007GL030239, 2007.
a
IRFU contributors: IRFU-Matlab analysis package, GitHub [code],
https://github.com/irfu/irfu-matlab, last access: 25 May 2022. a
Janhunen, S., Smolyakov, A., Sydorenko, D., Jimenez, M., Kaganovich, I., and Raitses, Y.:
Evolution of the electron cyclotron drift instability in two-dimensions, Phys. Plasmas, 25, 082308,
https://doi.org/10.1063/1.5033896, 2018.
a
Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L. M., Horbury, T., Balogh, A., Réme, H., and Bosqued, J. M.:
On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster, Ann. Geophys., 22, 2301–2308,
https://doi.org/10.5194/angeo-22-2301-2004, 2004.
a
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S., and Papadopoulos, K.:
The structure of perpendicular bow shocks, J. Geophys. Res.-Space, 87, 5081–5094,
https://doi.org/10.1029/JA087iA07p05081, 1982.
a
Lindqvist, P. A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., Needell, G., Turco, S., Dors, I., Beckman, P., Macri, J., Frost, C., Salwen, J., Eriksson, A., Åhlén, L., Khotyaintsev, Y. V., Porter, J., Lappalainen, K., Ergun, R. E., Wermeer, W., and Tucker, S.:
The spin-plane double probe electric field instrument for MMS, Space Sci. Rev., 199, 137–165,
https://doi.org/10.1007/s11214-014-0116-9, 2016.
a
Mazelle, C., Meziane, K., LeQuéau, D., Wilber, M., P.Eastwood, J., Sauvaud, H. R. J. A., Bosqued, J. M., McCarthy, I. D. M., Kistler, L. M., Klecker, B., Korth, A., Bavassano-Cattaneo, M. B., Pallocchia, G., and Balogh, R. L. A.:
Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth's bow shock: A case study from Cluster-CIS, Planet. Space Sci., 51, 785–795,
https://doi.org/10.1016/j.pss.2003.05.002, 2003.
a
McChesney, J. M., Stern, R., and Bellan, P. M.:
Observation of fast stochastic ion heating by drift waves, Phys. Rev. Lett., 59, 1436,
https://doi.org/10.1103/PhysRevLett.59.1436, 1987.
a
Muschietti, L. and Lembège, B.:
Two-stream instabilities from the lower-hybrid frequency to the electron cyclotron frequency: application to the front of quasi-perpendicular shocks, Ann. Geophys., 35, 1093–1112,
https://doi.org/10.5194/angeo-35-1093-2017, 2017.
a,
b
Norgren, C., Vaivads, A., Khotyaintsev, Y., and André, M.:
Lower hybrid drift waves: space observations, Phys. Rev. Lett., 109, 055001,
https://doi.org/10.1103/PhysRevLett.109.055001, 2012.
a
Ohsawa, Y.:
Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field, Phys. Fluids, 28, 2130,
https://doi.org/10.1063/1.865394, 1985.
a
Paschmann, G., Sckopke, N., Bame, S. J., and Gosling, J. T.:
Observations of gyrating ions in the foot of the nearly perpendicular bow shock, Geophys. Res. Lett., 9, 881–884,
https://doi.org/10.1029/GL009i008p00881, 1982.
a
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., Coffey, V., Dorelli, J., Gershman, D., Giles, B., Rosnack, T., Salo, C., Yokota, S., Adrian, M., Aoustin, C., Auletti, C., Aung, S., Bigio, V., Cao, N., Chandler, M., Chornay, D., Christian, K., Clark, G., Collinson, G., Corris, T., De Los Santos, A., Devlin, R., Diaz, T., Dickerson, T., Dickson, C., Diekmann, A., Diggs, F., Duncan, C., Figueroa-Vinas, A., Firman, C., Freeman, M., Galassi, N., Garcia, K., Goodhart, G., Guererro, D., Hageman, J., Hanley, J., Hemminger, E., Holland, M., Hutchins, M., James, T., Jones, W., Kreisler, S., Kujawski, J., Lavu, V., Lobell, J., LeCompte, E., Lukemire, A., MacDonald, E., Mariano, A., Mukai, T., Narayanan, K., Nguyan, Q., Onizuka, M., Paterson, W., Persyn, S., Piepgrass, B., Cheney, F., Rager, A., Raghuram, T., Ramil, A., Reichenthal, L., Rodriguez, H., Rouzaud, J., Rucker, A., Saito, Y., Samara, M., Sauvaud, J.-A., Schuster, D., Shappirio, M., Shelton, K., Sher, D., Smith, D., Smith, K., Smith, S., Steinfeld, D., Szymkiewicz, R., Tanimoto, K., Taylor, J., Tucker, C., Tull, K., Uhl, A., Vloet, J., Walpole, P., Weidner, S., White, D., Winkert, G., Yeh, P.-S., and Zeuch, M.:
Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 199, 331–406,
https://doi.org/10.1007/s11214-016-0245-4, 2016.
a
Rosenberg, S. and Gekelman, W.:
A three-dimensional experimental study of lower hybrid wave interactions with field-aligned density depletions, J. Geophys. Res., 106, 28867–28884,
https://doi.org/10.1029/2000JA000061, 2001.
a
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., and Richter, I.:
The magnetospheric multiscale magnetometers, Space Sci. Rev., 199, 189–256,
https://doi.org/10.1007/s11214-014-0057-3, 2016.
a
Sagdeev, R. Z.:
Cooperative Phenomena and Shock Waves in Collisionless Plasmas, Rev. Plasma Phys., 4, 23, 1966. a
Schwartz, S. J.:
Shocks and discontinuity normals, Mach numbers and related parameters, in: Analysis Methods for Multi-spacecraft Data, edited by: Paschmann, G. and Daly, P. W., Vol. SR-001 ISSI Reports, chap. 10, 249–270, ESA, 1998. a
Shapiro, V. D., Lee, M. A., and Quest, K. B.:
Role of lower hybrid turbulence in surfing acceleration at perpendicular shocks, J. Geophys. Res.-Space, 106, 25023–25030,
https://doi.org/10.1029/1999JA000384, 2001.
a,
b
Stasiewicz, K. and Eliasson, B.:
Quasi-adiabatic and stochastic heating and particle acceleration at quasi-perpendicular shocks, Astrophys. J., 903, 57,
https://doi.org/10.3847/1538-4357/abb825, 2020a.
a,
b,
c,
d,
e,
f,
g,
h,
i
Stasiewicz, K. and Eliasson, B.:
Stochastic and quasi-adiabatic electron heating at quasi-parallel shocks, Astrophys. J., 904, 173,
https://doi.org/10.3847/1538-4357/abbffa, 2020b.
a,
b,
c,
d,
e,
f
Stasiewicz, K. and Eliasson, B.:
Ion acceleration to 100
keV by the ExB wave mechanism in collisionless shocks, Mon. Not. R. Astron. Soc., 508, 1888–1896,
https://doi.org/10.1093/mnras/stab2739, 2021.
a,
b,
c,
d,
e,
f,
g,
h,
i
Stasiewicz, K. and Kłos, Z.:
On the formation of quasi-parallel shocks, magnetic and electric field turbulence, and ion energisation mechanism, Mon. Not. R. Astron. Soc.,
https://doi.org/10.1093/mnras/stac1193, 2022.
a,
b,
c,
d
Stasiewicz, K., Lundin, R., and Marklund, G.:
Stochastic ion heating by orbit chaotization on nonlinear waves and structures, Phys. Scripta, T84, 60–63,
https://doi.org/10.1238/physica.topical.084a00060, 2000.
a,
b
Stasiewicz, K., Eliasson, B., Cohen, I. J., Turner, D. L., and Ergun, R. E.:
Local acceleration of protons to 100
keV by the ExB wave mechanism in a quasi-parallel bow shock, J. Geophys. Res.-Space, 126, e2021JA029477,
https://doi.org/10.1029/2021JA029477, 2021.
a,
b,
c,
d,
e
Vaivads, A., André, M., Buchert, S. C., Wahlund, J.-E., Fazakerly, A. N., and Cornileau-Wehrlin, N.:
Cluster observations of lower hybrid turbulence within thin layers at the magnetopause, Geophys. Res. Lett., 31, L03804,
https://doi.org/10.1029/2003GL018142, 2004.
a
Walker, S. N., Balikhin, M. A., Alleyne, H. St. C. K., Hobara, Y., André, M., and Dunlop, M. W.:
Lower hybrid waves at the shock front: a reassessment, Ann. Geophys., 26, 699–707,
https://doi.org/10.5194/angeo-26-699-2008, 2008.
a
Wilson III, L. B.:
Low Frequency Waves at and Upstream of Collisionless Shocks, chap. 16, edited by: Keiling, A., Lee, D.-H., and Nakariakov, V.,
https://doi.org/10.1002/9781119055006.ch16, 269–291, 2016.
a
Wilson III, L. B., Cattell, C. A., Kellogg, P. J., Goetz, K., Kersten, K., Kasper, J. C., Szabo, A., and Wilber, M.:
Large-amplitude electrostatic waves observed at a supercritical interplanetary shock, J. Geophys. Res., 115, A12104,
https://doi.org/10.1029/2010JA015332, 2010.
a
Winske, D., Tanaka, M., Wu, C. S., and Quest, K. B.:
Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability, J. Geophys. Res., 90, 123–136,
https://doi.org/10.1029/JA090iA01p00123, 1985.
a,
b
Wu, C. S., Zhou, Y. M., Tsai, S.-T., Guo, S. C., Winske, D., and Papadopoulos, K.:
A kinetic cross-field streaming instability, Phys. Fluids, 26, 1259–1267,
https://doi.org/10.1063/1.864285, 1983.
a,
b
Zhou, Y. M., Wong, H. K., Wu, C. S., and Winske, D.:
Lower hybrid drift instability with temperature gradient in a perpendicular shock wave, J. Geophys. Res.-Space, 88, 3026–3034,
https://doi.org/10.1029/JA088iA04p03026, 1983.
a,
b