Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-861-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.Unsupervised classification of simulated magnetospheric regions
Related authors
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetospheric configuration and dynamics
The fate of O+ ions observed in the plasma mantle: particle tracing modelling and cluster observations
The increase in the curvature radius of geomagnetic field lines preceding a classical dipolarization
Magnetodisc modelling in Jupiter's magnetosphere using Juno magnetic field data and the paraboloid magnetic field model
Ann. Geophys., 38, 645–656,
2020Ann. Geophys., 38, 467–479,
2020Ann. Geophys., 37, 101–109,
2019Cited articles
Anderson, B. J., Korth, H., Welling, D. T., Merkin, V. G., Wiltberger, M. J.,
Raeder, J., Barnes, R. J., Waters, C. L., Pulkkinen, A. A., and Rastaetter,
L.: Comparison of predictive estimates of high-latitude electrodynamics with
observations of global-scale Birkeland currents, Space Weather, 15, 352–373,
https://doi.org/10.1002/2016sw001529, 2017. a
Angelopoulos, V.: The THEMIS mission, in: The THEMIS mission, 5–34,
Springer, New York, NY, 2009. a
Argall, M. R., Small, C. R., Piatt, S., Breen, L., Petrik, M., Kokkonen, K.,
Barnum, J., Larsen, K., Wilder, F. D., Oka, M., Paterson, W. R., Torbert,
R. B., Ergun, R. E., Phan, T., Giles, B. L., and Burch, J. L.: MMS SITL
Ground Loop: Automating the Burst Data Selection Process, Front.
Astron. Space Sci., 7, 54, https://doi.org/10.3389/fspas.2020.00054, 2020. a, b, c
Armstrong, J. A. and Fletcher, L.: Fast solar image classification using deep
learning and its importance for automation in solar physics, Solar Phys.,
294, 80, https://doi.org/10.1007%2Fs11207-019-1473-z, 2019. a