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Abstract. In magnetospheric missions, burst-mode data sam-
pling should be triggered in the presence of processes of sci-
entific or operational interest. We present an unsupervised
classification method for magnetospheric regions that could
constitute the first step of a multistep method for the auto-
matic identification of magnetospheric processes of interest.
Our method is based on self-organizing maps (SOMs), and
we test it preliminarily on data points from global magne-
tospheric simulations obtained with the OpenGGCM-CTIM-
RCM code. The dimensionality of the data is reduced with
principal component analysis before classification. The clas-
sification relies exclusively on local plasma properties at the
selected data points, without information on their neighbor-
hood or on their temporal evolution. We classify the SOM
nodes into an automatically selected number of classes, and
we obtain clusters that map to well-defined magnetospheric
regions. We validate our classification results by plotting the
classified data in the simulated space and by comparing with
k-means classification. For the sake of result interpretabil-
ity, we examine the SOM feature maps (magnetospheric vari-
ables are called features in the context of classification), and
we use them to unlock information on the clusters. We repeat
the classification experiments using different sets of features,
we quantitatively compare different classification results, and
we obtain insights on which magnetospheric variables make
more effective features for unsupervised classification.

1 Introduction

The growing amount of data produced by measurements and
simulations of different aspects of the heliospheric environ-

ment has made it fertile ground for applications rooted in ar-
tificial intelligence, AI, and machine learning, ML (Bishop,
2006; Goodfellow et al., 2016). The use of ML in space
weather nowcasting and forecasting is addressed in partic-
ular in Camporeale (2019). ML methods promise to help sort
through the data and find unexpected connections and can,
hopefully, assist in advancing scientific knowledge.

Much of the AI/ML effort in space physics is directed at
the Sun itself, either in the form of classification of solar im-
ages (Armstrong and Fletcher, 2019; Love et al., 2020) or for
the forecast of transient solar events (see Bobra and Couvi-
dat, 2015; Nishizuka et al., 2017; Florios et al., 2018, and
references therein). This is not surprising, since the Sun is
the driver of the heliospheric system and the ultimate cause
of space weather (Bothmer and Daglis, 2007). Solar imag-
ing is also one of the fields in science where data are being
produced at an increasingly faster rate (see Fig. 1 in Lapenta
et al., 2020).

Closer to Earth, the magnetosphere has been sampled for
decades by missions delivering an ever-growing amount of
data, although magnetospheric missions are still far away
from producing as much data as solar imaging. The four-
spacecraft Cluster mission (Escoubet et al., 2001) has been
investigating the Earth’s magnetic environment and its inter-
action with the solar wind for over 20 years. Laakso et al.
(2010), introducing a publicly accessible archive for high-
resolution Cluster data, expected it to exceed 50 TB. The
Magnetospheric Multiscale Mission (MMS; Burch et al.,
2016) is a four-spacecraft mission launched in 2015 with
the objective of investigating the microphysics of mag-
netic reconnection in the terrestrial magnetotail and mag-
netopause. It collects a combined volume of ∼ 100 gigabits
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per day of particle and field data, of which only about four
can be transmitted to the ground due to downlink limita-
tions (Baker et al., 2016). The Time History of Events and
Macroscale Interactions during Substorms (THEMIS) mis-
sion (Angelopoulos, 2009) is composed of five spacecraft
launched in 2007 to investigate the role of magnetic recon-
nection in triggering substorm onset. It produces ∼ 2.3 giga-
bits of data per day. Comparing THEMIS and MMS, we have
seen an increase in the volume of data produced, of almost 2
orders of magnitude, in just 8 years.

Several studies have applied classification techniques to
different aspects of the near-Earth space environment. Su-
pervised classification has been extensively used for the de-
tection and classification of specific processes or regions.
An incomplete list of recent examples includes the detec-
tion and classification of magnetospheric ultra-low frequency
waves (Balasis et al., 2019), the detection of quasi-parallel
and quasi-perpendicular magnetosheath jets (Raptis et al.,
2020), and the detection of magnetopause crossings (Argall
et al., 2020). Supervised techniques have also been used for
the classification of large-scale geospace regions, such as
the solar wind, the magnetosheath, the magnetosphere, and
ion foreshock in Olshevsky et al. (2019), the solar wind,
ion foreshock, bow shock, magnetosheath, magnetopause,
boundary layer, magnetosphere, plasma sheet, plasma sheet
boundary layer, and lobe in Breuillard et al. (2020), and mag-
netosphere, magnetosheath, and solar wind in MMS data
in Nguyen et al. (2019); da Silva et al. (2020). In the con-
text of kinetic physics, Bakrania et al. (2020) have applied
dimensionality reduction and unsupervised clustering meth-
ods to the magnetotail electron distribution in pitch angle and
energy space and have identified eight distinct groups of dis-
tributions related to different plasma dynamics.

Almost all the magnetospheric classification studies men-
tioned above use supervised classification methods. Super-
vised classification relies on the previous knowledge and in-
put of human experts. The accuracy of these methods comes
from the use of known correlations between inputs and the
corresponding output classes presented to the algorithm dur-
ing the training phase. Supervised classification is sometimes
made unpractical by the need to label large amounts of data
for the training phase. In magnetospheric studies, this is often
less of an issue due to the widespread availability of labeled
magnetospheric data sets such as, for example, data tagged
by the MMS “scientist in the loop” (Argall et al., 2020).
However, the personal biases of the particular scientist la-
beling the data limit the ability of the algorithms to detect
new and previously unknown patterns in the data.

On the other hand, unsupervised machine learning models
can discern patterns in large amounts of unlabeled data with-
out human intervention and the associated biases. Clustering
techniques separate data points into groups that share similar
properties. Each cluster is represented by a mean value or by
a centroid point. A good clustering technique will produce a
set of centroids with a distribution in data space that closely

resembles the data distribution of the full data set. This al-
lows us to differentiate groups of points in the data space
and to identify dense distributions. Unsupervised methods
are particularly useful for discovering data patterns in very
large data sets composed of multidimensional (i.e., charac-
terized by multiple variables) properties, without having any
kind of input from human experts. This is an unbiased, auto-
matic approach to discover hidden information in large sim-
ulation and observation data sets. In other words, while su-
pervised ML can be useful for applying known methods to
a broader set of data, unsupervised ML holds the promise of
achieving a true discovery or new insight.

Here, we explore an unsupervised classification method
for simulated magnetospheric data points based on self-
organizing maps (SOMs). Simulated data points are used to
train a SOM, whose nodes are then clustered into an optimal
number of classes. A posteriori, we try to map these classes
to recognizable magnetospheric regions.

The objective of this work is to understand if the method
we propose can be a viable option for the classification
of magnetospheric spacecraft data into large-scale magne-
tospheric regions. We also aim at gaining insights into the
specifics of the magnetospheric system (which are the best
magnetospheric variables to use to train the classifiers?
Which is the optimal cluster number?) that can later help us
to extend our work to spacecraft data. At the current stage,
we move our first steps in the controlled and somehow eas-
ily understandable environment of simulations, where time–
space ambiguities are eliminated, and one can validate clas-
sification performance by plotting the classified data point in
the simulated space. In Sect. 2, we recall the main character-
istics of the OpenGGCM-CTIM-RCM code and the global
MagnetoHydroDynamics (MHD) code used in this study to
simulate the magnetosphere, and we show some preliminary
analysis of the data we obtain. A brief description of the
SOM algorithm is provided in Sect. 3. In Sect. 4, we illus-
trate our classification methodology. In Sect. 4.1, we analyze
a classification experiment done with one particular set of
magnetospheric features (we call these magnetospheric vari-
ables “features” in the context of classification), and we real-
ize that our unsupervised classification results agree to a sur-
prisingly degree with what a human would do. In Sect. 4.2,
we focus on model validation and, in particular, on tempo-
ral robustness and on comparison with another unsupervised
classification method. In Sect. 4.3, we examine different sets
of features for the SOM training. We obtain alternative (but
still physically significant) classification results, and some
insights into what constitutes a good set of features for our
classification purposes. The discussions and conclusions fol-
low.

Further information of interest is provided in Appendix A,
where we report on a manual exploration of the SOM hyper-
parameter space, and in Appendix B, where we assess how
robust our classification method is by changing the number
of k-means clusters used to classify the SOM nodes.
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2 Global magnetospheric simulations

The global magnetospheric simulations are produced
with the OpenGGCM-CTIM-RCM code, a MHD-based
model that simulates the interaction of the solar wind
with the magnetosphere–ionosphere–thermosphere system.
OpenGGCM-CTIM-RCM is available at the Community Co-
ordinated Modeling Center at NASA Goddard Space Flight
Center (GSFC) for model runs on demand. A detailed de-
scription of the model and typical examples of OpenGGCM
applications can be found in Raeder (2003), Raeder et al.
(2001b), Raeder and Lu (2005), Connor et al. (2016), Raeder
et al. (2001a), Ge et al. (2011), Raeder et al. (2010), Ferdousi
and Raeder (2016), Dorelli (2004), Raeder (2006), Berchem
et al. (1995), Moretto et al. (2006), Vennerstrom et al. (2005),
Anderson et al. (2017), Zhu et al. (2009), Zhou et al. (2012),
and Shi et al. (2014), to name a few. Of particular relevance
to this study is OpenGGCM-CTIM-RCM simulations that
have recently been used for a domain of influence analysis,
a technique rooted in data assimilation that can be used to
understand what the most promising locations are for moni-
toring (i.e., spacecraft placing) in a complex system such as
the magnetosphere (Millas et al., 2020).

OpenGGCM-CTIM-RCM uses a stretched Cartesian
grid (Raeder, 2003), which in this work has 325× 150×
150 cells, sufficient for our large-scale classification pur-
poses, while running for few hours on a modest number
of cores. The point density increases in the sunward direc-
tion and in correspondence with the magnetospheric plasma
sheet, an interesting region of the simulation for our current
purposes. The simulation extends from −3000RE to 18RE
in the Earth–Sun direction and from −36 to +36RE in the y
and z direction. RE is the Earth’s mean radius, and the Geo-
centric Solar Equatorial (GSE) coordinate system is used in
this study.

In this work, we do not classify points from the entire sim-
ulated domain. We focus on a subset of the points with co-
ordinates −41< x/RE < 18, i.e., the magnetosphere–solar
wind interaction region and the near-Earth magnetotail.

The OpenGGCM-CTIM-RCM boundary conditions re-
quire the specification of the three components of the solar
wind velocity and magnetic field, the plasma pressure, and
the plasma number density at 1 AU. Boundary conditions
in the sunward direction vary with time. They are interpo-
lated to the appropriate simulated time from ACE observa-
tions (Stone et al., 1998) and applied identically to the entire
sunward boundary. At the other boundaries, open boundary
conditions (i.e., zero normal derivatives) are applied, with ap-
propriate corrections to satisfy the ∇ ·B = 0 condition.

For this study, we initialize our simulation with solar wind
conditions observed, starting from 8 May 2004, 09:00 UTC
(universal coordinated time), denoted as t0. After a transient,
the magnetosphere is formed by the interaction between the
solar wind and the terrestrial magnetic field.

We classify simulated data points from the time t0+

210 min, when the magnetosphere is fully formed. We later
compare our results with earlier and later times, namely
t0+150 and 225 min. In Fig. 1, we show significant magneto-
spheric variables at t0+210 min, in the xz plane at y/RE = 0
(meridional plane), namely the three components of the mag-
netic field Bx , By , and Bz, the three velocity components vx ,
vy , and vz, the plasma density n, pressure pp, temperature
T , the Alfvén speed vA, the Alfvénic Mach numberMA, and
the plasma β. Magnetic field lines (more precisely, lines tan-
gential to the field direction within the plane) are drawn in
black. Panels (g) to (l) in Fig. 1 are in logarithmic scale.

We expect the algorithm to identify well-known domains
such as pristine solar wind, magnetosheath, lobes, inner mag-
netosphere, plasma sheet, and boundary layers, which can be
clearly identified in these plots. The classification is done for
points from the entire 3D volume and not only for 2D cuts
such as the one shown.

In Fig. 2, we depict the violin plots for the variables in
Fig. 1. Violin plots are useful tools to visualize, at a glance,
the distribution of feature values, as they depict the proba-
bility density of the data at different values. In violin plots,
the shape of the violin depicts the frequency of occurrence
of each feature; the thicker regions of the violin are where
most of the observations lie. The white dot, the thick black
vertical lines, and the thin vertical lines (the whiskers) sep-
arating the blue and orange distributions depict the median,
the interquartile range, and the 95 % confidence interval, re-
spectively. In total, 50 % of the data lie in the region high-
lighted by the thick black vertical lines; 95 % of the data lie
in correspondence of the whiskers. The left and right sides
of the violins depict distributions at different times. The left
side, in blue, depicts data points from t0+210 min. The right
side, in orange, depicts a data set composed of points from
multiple snapshots, t0+ 125, 175, and 200 min, and intends
to give a visual assessment of the variability in the distribu-
tion of magnetospheric properties with time. The width of
the violins is normalized to the number of points in each bin.

In the simulations, points closer to Earth correctly ex-
hibit very high magnetic field values, up to several mi-
crotesla (hereafterµT). In the violin plots, for the sake of
visualization, the magnetic field components of points with
|B|> 100 nT have been clipped to

√
1002/3 nT, multiplied

by their respective sign (hence the accumulation of points at
±

√
1002/3 nT in the magnetic field components). The multi-

peaked distribution of several of the violins reflects the vari-
ability in these parameters across different magnetospheric
environments. Multi-peaked distributions bode well for clas-
sification, since they show that the underlying data can be
inherently divided in different classes.
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Figure 1. Simulated magnetospheric variables in the y/RE = 0, meridional, plane and at t0+210 min. The different magnetospheric regions
are evident. Magnetic field lines are depicted as black arrows.

3 Self-organizing maps: a recap

To classify magnetospheric regions, we use self-organizing
maps (SOMs), an unsupervised ML technique. Self-
organizing maps (Kohonen, 1982; Villmann and Claussen,
2006; Kohonen, 2014; Amaya et al., 2020), also known as
Kohonen maps or self-organizing feature maps, are a cluster-
ing technique based on a neural network architecture. SOMs
aim at producing an ordered representation of data, which in
most cases has lower dimensionality with respect to the data
itself. “Ordered” is a key word in SOMs. The topographi-
cal relations between the trained SOM nodes are expected to
be similar to those of the source data; data points that map
to nearby SOM nodes are expected to have similar features.
Each SOM node then represents a local average of the in-
put data distribution, and nodes are topographically ordered
according to their similarity relations (Kohonen, 2014).

A SOM is composed of the following:

– A (usually) two-dimensional lattice of Lr×Lc = q

nodes, with Lr and Lc as the number of rows and
columns. This lattice, also called a map, is a structured
arrangement in which all nodes are located in fixed po-
sitions, pi ∈ R2, and are associated with a single code
word, wi . As it is often done with two-dimensional
SOM lattices, the nodes are organized in an hexagonal
grid (Kohonen, 2014).

– A list of q code words w = {wi ∈ Rn}i=0..q−1, where n
is the number of features associated to each data point
(and, hence, to each code word). n is therefore the num-
ber of plasma variables that we select, among the avail-
able ones, for our classification experiment. Each wi is
associated with a map node pi

Each of the m input data points is a data entry xτ ∈ Rn. No-
tice that, in the rest of the paper, we will use terms such as
“data point”, “data entry”, and “input point” interchangeably.
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Figure 2. Violin plots of the data sets extracted from the magnetospheric simulations. The left sides of the violins, in blue, are data points
at t0+ 210 min, and the right, in orange, are from t0+ 125, 175, and 200 min. In the Bx plot, the red, green, and blue arrows point at the
median, first and third quartiles, and whiskers, respectively.

Given a data entry xτ , the closest code word in the map, ws
(Eq. 1), is called the winning element, and the corresponding
map node ps is the best matching unit (BMU).

ws = argmin
wi∈w

(‖xτ −wi‖) . (1)

||.|| is the distance metric. In this work, we use the Euclidean
norm.

SOMs learn by moving the winning element and neigh-
boring nodes closer to the data entry, based on their relative
distance, and on a iteration-number-dependent learning rate
ε(τ ), with τ the progression of samples being presented to
the map for training. The feature values of the winning el-
ement are altered so as to reduce the distance between the
updated winning element and the data entry. The peculiar-
ity of the SOMs is that a single entry is used to update the
position of several code words in feature space, the winning
nodes, and its nearest neighbors. Code words move towards
the input point at a speed proportional to the distance of their
correspondent lattice node position to the winning node.

It is useful to compare the learning procedure in SOMs and
in another, perhaps better known, unsupervised classification
method, namely k-means (Lloyd, 1982). Both SOMs and
k-means classification identify and modify the best match-
ing unit for each new input. In k-means, only the winner

node is updated. In SOMs, the winner node and its neighbors
are updated. This is done to obtain an ordered distribution;
nearby nodes, notwithstanding their initial weights, are mod-
ified during training as to become more and more similar.

At every iteration of the method, the code words of the
SOM are shifted according to the following rule:

1wi = ε(τ )hσ (τi, i, s)(xτ −wi), (2)

with hσ (τ, i,j) defined as the lattice neighbor function as
follows:

hσ (τ, i,j)= e
−
‖pi−pj‖

2

2σ(τ)2 , (3)

where σ(τ) is the iteration-number-dependent lattice neigh-
bor width. The training of the SOM is an iterative process. At
each iteration, a single data entry is presented to the SOM,
and code words are updated accordingly. The radius of the
neighboring function σ(τ) determines how far from the win-
ning node the update introduced by the new input will extend.
The learning rate ε(τ ) gives a measure of the magnitude of
the correction. Both are slowly decreased with the iteration
number. At the beginning of the training, the update intro-
duced by a new data input will extend to a large number of
nodes (large σ ), which are significantly modified (large ε),

https://doi.org/10.5194/angeo-39-861-2021 Ann. Geophys., 39, 861–881, 2021



866 M. E. Innocenti et al.: Unsupervised classification of simulated magnetospheric regions

since it is assumed that the map node does not represent the
input data distribution well. At large iteration numbers, the
nodes are assumed to have already become more similar to
the input data distribution, and lower σ and ε are used for
fine tuning.

In this work, we choose to decrease σ and ε with the itera-
tion number. Another option, which we do not explore, is to
divide the training into two stages, i.e., coarse ordering and
final convergence, with different values of σ and ε.

However small, σ has to be kept larger than 0, otherwise
only the winning node is updated, and the SOM loses its or-
dering properties (Kohonen, 2014).

This learning procedure ensures that neighboring nodes
in the lattice are mapped to neighboring nodes in the n-
dimensional feature space. The 2D maps obtained can then
be graphically displayed, allowing us to visually recognize
patterns in the input features and to group together points
that have similar properties (see Fig. 5).

The main metric for the evaluation of the SOM is the quan-
tization error, which measures the average distance between
each of them entry data points and its BMU and, hence, how
closely the map reflects the training data distribution.

QE =
1
m

m∑
i=1

∥∥xi −ws|xi∥∥ . (4)

4 Methodology and results

For our unsupervised classification experiments, we initially
focus on a single temporal snapshot of the OpenGGCM-
CTIM-RCM simulation, t0+ 210 min. Although the simula-
tion domain is much larger, we restrict our input data set to
the points with −41< x/RE < 18 (see Fig. 1), since we are
particularly interested in the magnetospheric regions more
directly shaped by interaction with the solar wind. We se-
lect 1 % of the 5 557 500 data points at x/RE >−41 and
t = t0+ 210 min as the training data set. The selection of
these points is randomized, and the seed of the random num-
ber generator is fixed to ensure that results can be reproduced.
Tests with different seeds and with a higher number of train-
ing points did not give significantly different classification
results.

In Fig. 3a, we plot the correlation matrix of the training
data set. This and all subsequent analyses, unless otherwise
specified, are done with the feature list labeled as F1 in Ta-
ble 1, i.e., the three components of the magnetic field and of
the velocity, the logarithm of the density, pressure, and tem-
perature. In Table 1, we describe the different sets of features
used in the classification experiments described in Sect. 4.3.
Each set of feature is assigned an identifier (case); the list
of magnetospheric variables used in each case is listed un-
der “features”. Differences with respect to F1 are marked in
bold.

Table 1. Combination of features (cases) used for the different clas-
sification experiments. We mark differences with respect to F1, our
reference feature set, in bold.

Case Features

F1 Bx , By , Bz , vx , vy , vz, log(n), log(pp), log(T )
F1-NL Bx , By , Bz, vx , vy , vz, n, pp, T
F2 Bx , By , Bz, vx , vy , vz, log (n), log(pp), log(T )
F3 Bx , By , Bz, vx, vy , vz, log(n), log(pp), log(T )
F4 Bx , By , Bz, vx , vy , vz, log(n), log(pp), log(T ), log(vA )
F5 Bx , By , Bz, vx , vy , vz, log(n), log(pp), log(T ), log(MA )
F6 Bx , By , Bz , vx , vy , vz, log(n), log(pp), log(T ), log(β )
F7 Bx, By, Bz, vx , vy , vz, log(n), log(pp), log(T )
F8 Bx , By , Bz(clipped), vx , vy , vz, log(n), log(pp), log(T )
F9 |B| (clipped), vx , vy , vz, log(n), log(pp), log(T )
F10 log|B|, vx , vy , vz, log(n), log(pp), log(T )

The correlation matrix shows the correlation coefficients
between a variable and all others, including itself (the cor-
relation coefficient of a variable with itself is, of course, 1).
We notice that, in the bottom right of the matrix, correlation
is high between logarithm of density, logarithm of pressure,
logarithm of temperature, and velocity in the Earth–Sun di-
rection. This suggests that a lower-dimension feature set can
be obtained that still expresses a high percentage of the orig-
inal variance. Using a lower dimensional training data set is
desirable, since it reduces the training time of the map.

At this stage of our investigation, we use principal com-
ponent analysis (PCA) (Shlens, 2014) as a dimensionality
reducing tool. More advanced techniques, and in particular
techniques that do not rely on linear correlation between the
features, are left for future work.

First, the variables are scaled between two fixed numbers,
here 0 and 1, to prevent those with larger ranges from dom-
inating the classification. Then, we use PCA to extract lin-
early independent principal components, PCs, from the set of
original variables. We keep the first three PCs, which express
52 %, 35 %, and 5.4 % of the total variance, thus retaining
93 % of the initial variance. We plot in Fig. 3b–d (left; blue
half-violins) the violin plots of these scaled components. For
a visual assessment of temporal variability in the simulations,
we show (right; orange half-violins) the first three PCs of the
mixed time data set, where data points are taken at t0+ 125,
175, and 200 min. We see a difference, albeit small, between
the two sets, which explains the different classification re-
sults with fixed and mixed time data sets that we discuss in
Sect. 4.3. Notice that, by comparing the blue and orange half-
violins in panel (b), that PC0 is rotated around the median
value in the two data sets, which is possible for components
reconstructed through linear PCA.

To investigate which of the features contribute most to
each PC, we show, in Table 2, the F1 feature set, which is the
eigenvectors associated with the first three PCs (rows). Each
column corresponds to one feature. The three most relevant
features for each PC are marked in bold.
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Figure 3. Correlation plot for the fixed time training data set at time
t0+210 min (a). Violin plots of the first three PCs after PCA for the
fixed (left; blue half-violins) and mixed (right; orange half-violins)
time data sets (b–d) are shown.

The three most significant F1 features for PC0 are the log-
arithm of the density, of the pressure, and the velocity in the
x direction; for PC1 it is the logarithm of the temperature, of
the pressure, and the velocity in the x direction; and for PC2
it is the velocity in the y direction, in the z direction, and the
logarithm of the plasma pressure. We see that the three mag-
netic field components rank the lowest in importance for all
the three PCs.

This last result is, at first glance, quite surprising, given
the fundamental role of the magnetic field in magnetospheric
dynamics. We can explain it by looking at the violin plots in
Fig. 2. There, we see that the magnetic field distributions are
quite simple when compared to the multi-peak distributions
of more significant features such as density, pressure, tem-
perature, and vx . Still, one may argue that the very high val-
ues of the magnetic field close to Earth distort the magnetic
field component distributions and reduce their weight in de-
termining the PCs. In Table 2 (F8 feature set – B clipped),
we repeat the analysis clipping the magnetic field values as
in Fig. 2. The intention of the clipping procedure is to cap
the maximum magnitude of the magnetic field module to
100 nT, while retaining information on the sign of each mag-
netic field component.

Also now, the magnetic field does not contribute signifi-
cantly to determining the PCs.

In Table 2 (F9 feature set – B clipped), we list the eigen-
vectors associated with the first three PCs for the F9 feature
set. We see that now the clipped magnetic field magnitude
ranks higher than with the F1 feature set and the F8 feature
set (B clipped) in determining the PCs and becomes relevant,
especially for PC1 and PC2. In the violin plots of the PCs
for F9, not shown here, we see that PC0 is not significantly
different in F1 and F9, while PC1 and PC2 are. In particular,
PC2 for F9 exhibits more peaks than PC2 for F1.

The first three PCs obtained from the F1 feature list (with-
out magnetic field clipping) are used to train a SOM. Each of
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the data points is processed and classified separately, based
solely on its local properties, at t0+210 min. We consider this
local approach one of the strengths of our analysis method,
which makes it particularly appealing for spacecraft onboard
data analysis purposes.

The procedure for the selection of the SOM hyperparame-
ters is described in Appendix A. At the end of it, we choose
the following hyperparameters: q = 10× 12 nodes, initial
learning rate ε0 = 0.25, and initial lattice neighbor width
σ0 = 1.

After the SOM is generated, its nodes are further classi-
fied using k-means clustering in a predetermined number of
classes. Data points are then assigned to the same cluster as
their BMU.

The overall classification procedure can then be summa-
rized as follows:

1. data pre-processing (feature scaling, dimensionality re-
duction via PCA, and scaling of the reduced values),

2. SOM training,

3. k-means clustering of the SOM nodes, and

4. classification of the data points, based on the classifica-
tion of their BMU.

It is useful to remark that, even if the same data are used to
train different SOMs, the trained networks will differ due,
e.g., to the stochastic nature of artificial neural networks and
to their sensitivity to initial conditions. If the initial positions
of the map nodes are randomly set (as in our case), maps
will evolve differently, even if the same data are used for the
training.

To verify that our results do not correspond to local min-
ima, we have trained different maps seeding the initial ran-
dom node distribution with different seed values. We have
verified that the trained SOMs generated in this way give
comparable classification results, even if the nodes that map
to the same magnetospheric points are located at different
coordinates in the map. The reason for this comparable clas-
sification results is that the net created by a well-converged
SOM will always have a similar coverage, and neighboring
nodes will always be located at similar distances with respect
to their neighbors (if the training data do not change). Hence,
while the final map might look different, the classes and their
properties will produce very similar end results. We refer the
reader to Amaya et al. (2020) for an exploration of the sen-
sitivity of the SOM method to the parameters and to initial
condition and for a study of the rate and speed of conver-
gence of the SOM.

Our maps are initialized with random node distributions. It
has been demonstrated that different initialization strategies,
such as using as initial node values a regular sampling of the
hyperplane spanned by the two principal components of the
data distribution, significantly speed up learning (Kohonen,
2014).

4.1 Classification results and analysis

We describe in this section the results of a classification ex-
periment with the feature set F1 from Table 1. After training
the SOM, we proceed to node clustering. The optimal num-
ber of k-means classes k can be chosen by examining the
variation in k of the within-cluster sum of squares (WCSSs),
i.e., the sum of the squared distances from each point to their
cluster centroid. The WCSS decreases as k increases; the op-
timal value can be obtained using the Kneedle (“knee” plus
“needle”) class number determination method (Satopaa et al.,
2011) that identifies the knee where the perceived cost to al-
ter a system parameter is no longer worth the expected per-
formance benefit. Here, the Kneedle method (Fig. 4a) gives
k = 7 as the optimal cluster number, i.e., a representative and
compact description of feature variability.

The clustering classification results can be plotted in 2D
space. Figure 4 shows, in panel d and e, points with −1<
y/RE < 1 and with−1< z/RE < 1 that we identify, for sim-
plicity, with the meridional and equatorial plane, respec-
tively. The projected field lines are depicted in black; k = 7,
as per the results of the Kneedle method. The points are de-
picted in colors, with each color representing a class of clas-
sified SOM nodes. The dot density changes in different areas
of the simulation because the grid used in the simulation is
stretched, with increasing points per unit volume in the sun-
ward direction and in the plasma sheet center. The (T) in the
label is used to remind the reader that these points are the
ones used for the training of the map. Plots of validation data
sets will be labeled as (V).

The SOM map in Fig. 4c depicts the clustered SOM nodes.
In Fig. 4b, the clusters are a posteriori mapped to different
magnetospheric regions.

Comparing Figs. 4 and 1, we see that cluster 0, purple, cor-
responds to unshocked solar wind plasma. Clusters 4 (brown)
and 1 (blue) map to the shocked magnetosheath plasma just
downstream of the bow shock. Cluster 5 (orange) groups both
points in the downwind supersonic magnetosheath, further
downstream from the bow shock, and a few points at the
bow shock. A possible explanation for this is that the bow
shock is not in fact a vanishingly thin boundary but has a fi-
nite thickness. The points within this region of space would
present characteristics intermediate between the unshocked
solar wind and the shocked plasma just downstream of the
bow shock, which are serendipitously very similar to those
of other regions. Cluster 2, cyan, maps to boundary layer
plasma. Cluster 3, green, corresponds to points in the inner
magnetosphere.

The result of this unsupervised classification is actually
quite remarkable because it corresponds quite well to the hu-
man identification of magnetospheric regions developed over
decades on the basis of analysis satellite data and understand-
ing of physical processes. Here, instead, this very plausible
classification of magnetospheric regions is obtained without
human intervention.
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Figure 4. (a) Kneedle determination of the optimal number of k-means clusters for the SOM nodes. WCSSs (left axis) is the within-cluster
sum of squares, the maximum of the normalized distance (right axis) identifies the optimal cluster number (here k = 7). (b) A posteriori class
identification. (c) Clustered SOM nodes. (d, e) Classified points in the meridional and equatorial planes, respectively. In panels (b) to (e),
k = 7. The points depicted are the ones used for the training (T) of the map.

In Fig. 5, we plot the feature map associated with the clas-
sification in Fig. 4. While a good correspondence between
the feature value at a SOM node and values at the associ-
ated data points can be expected for the features that con-
tribute most to the first PCs, this cannot be expected with
less relevant features, such as the three components of the
magnetic field in this case (see the F1 feature set in Table 2
and the accompanying discussion). Keeping these consider-
ations in mind while looking at the feature values across the
map nodes in Fig. 5, we see that they correspond quite well
with what we expect from the terrestrial magnetosphere.

In particular, we see that the pristine solar wind (cluster 0
with k = 7 in Fig. 4; bottom right corner of the map in Fig. 5)
is well separated in terms of properties from the neighbor-
ing regions, especially when considering vx , plasma pres-
sure, and temperature. This is because the plasma upstream
a shock is faster, lower pressure, and colder than the plasma
downstream. In a shock, we expect a higher density down-
stream of the shock. We see that, of the three magnetosheath
clusters (clusters 1, 4, and 5 in Fig. 4; the cluster surround-
ing the bottom right cluster in Fig. 5), the two mapping to
regions just downstream of the bow shock (clusters 1 and 4)
have a higher density than the solar wind cluster. When mov-
ing from clusters 1 and 4 towards the lobes, i.e., into cluster 5,
the density decreases.

Clusters 1 and 4 are associated with magnetosheath plasma
immediately downstream of the bow shock. We see that their
nodes have very similar values in terms of density, pressure,
temperature, and vx , with the quantities mainly associated to
the area downstream of the bow shock. They differ mainly in
terms of the sign of the vz velocity components; the regions
identified in Fig. 4 as cluster 4 (1) have mainly positive (neg-
ative) vz. This may be the reason why two nodes adjacent to
cluster 4 but presenting vz < 0 are carved out as cluster 1 in
the map. We notice that, as a general rule, nodes belonging
to the same cluster are expected to be contiguous in the SOM
map, barring higher-dimension geometries which cannot be
drawn in a 2D plane.

Other clusters that draw immediate attention are clusters 2
and 3, at the top right of the map, which are the only ones
whose nodes include positive vx values (sunward velocity).
These clusters map to boundary layers and the inner magne-
tosphere; the vx > 0 nodes are associated with the earthwards
fronts we see in Fig. 1d.

Finally, we remark on a seemingly strange fact. Lobe
plasma is clustered in cluster 6, which maps in Fig. 5 to
nodes associated to Bx > 0 only. We can explain this with
the negligible role that Bx has in determining the PCs for the
F1 feature set (see the discussion in Sect. 4) and, hence, the
map structure. We can expect that the feature map for fea-
tures that rank higher in determining the PCs (here density,
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Figure 5. Distribution of the feature values in the SOM map, with q = 10× 12, σ0 = 1, and ε0 = 0.25. The cluster boundaries and numbers
are for k = 7 (Fig. 4). Cluster 0 corresponds to pristine solar wind, clusters 1, 4, and 5 to magnetosheath plasma, cluster 2 to boundary layers,
cluster 3 to the inner magnetosphere, and cluster 6 to the lobes.

pressure, temperature, and vx) will be more accurate than for
lower-ranking features.

4.2 Model validation

In this section, we address the robustness of the classifica-
tion method when confronted with data from different simu-
lated times (Sect. 4.2.1), and we compare it against a differ-
ent unsupervised classification method (pure k-means classi-
fication) in Sect. 4.2.2.

4.2.1 Robustness to temporal variations

In Fig. 4, we plot classification results for the training set (T).
Now, in Fig. 6, we move to validation sets (V), composed of
different points from the same simulated time as the training
set (Fig. 6b and e; t0+210 min), and of points from different
simulated times (Fig. 6a and c; Fig. 6d and f; t0+ 150 and
t0+ 225, respectively). While Fig. 6b and e show a straight-
forward sanity check, Fig. 6a and c aim at assessing how ro-
bust the classification method is to temporal variation. We
want to verify how well classifiers trained at a certain time
perform at different times and, in particular, under different
orientations of the geoeffective component of the interplan-
etary magnetic field (IMF) Bz, which has well-known and
important consequences for the magnetic field structure. Bz

points southwards at time t0+ 210 and 225 min and north-
wards at t0+ 150 min.

The points classified in Fig. 6a–f are pre-processed and
classified not only with the same procedure but also with the
same scalers, SOM, and classifiers described in Sect. 4 and
are trained on a subset of data from t0+ 210 min. Figure 6a
to c depict points in the meridional plane and Fig. 6d to f in
the equatorial plane.

While we can expect that the performance of classifiers
trained at a single time will degrade when magnetospheric
conditions change, it is useful information to understand how
robust they are to temporal variation and which are the re-
gions in the magnetosphere which are more challenging to
classify correctly.

Examining Fig. 6b and e, we see that the classification re-
sults for the validation set at t0+ 210 min excellently match
those obtained with the training set (Fig. 4). The classifica-
tion outcomes at time t0+ 150 min (Fig. 6a and d) are also
well in line with time t0+ 210. The biggest difference in the
plots at t0+ 150 min, with t0+ 210, is in the southern mag-
netosheath region just downstream of the bow shock in the
meridional plane. While this region is classified as cluster 1
at time t0+ 210, it is classified at time t0+ 150 min as clus-
ters 1 or 4, and the other magnetosheath cluster downstream
of the bow shock is mostly associated with the northern mag-
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Figure 6. Classification of validation (V) data sets in the meridional (a–c) and equatorial (d to f) planes at t0+150, t0+210, and t0+225 min.
In panels (a)–(f), the points are classified with the same classifiers as in Fig. 4. Data points in panels (b) and (e) are from the same simulated
time as the training set; those in panels (a), (c), (d), and (f) are from different times. Bz points northwards at t0+ 150 min and southwards at
t0+ 210, which is 225 min. In panels (g)–(i), the classifiers are trained with a mixed time data set composed of points from t0+ 125, 175,
and 200 min in feature set F1 TV.

netosheath at time t0+ 210. In Fig. 6c, time t0+ 225 min, all
magnetosheath plasma downstream of the bow shock is clas-
sified as cluster 1.

This result can be easily explained. Clusters 1 and 4 both
map to shocked plasma downstream of the bow shock, i.e.,
regions with virtually identical properties in terms of the
quantities that weigh the most in determining the PCs and,
therefore, arguably,the SOM structure (plasma density, pres-
sure, temperature, and vx). The features that could help in
distinguishing between the northern and southern sectors, Bx
and vz, rank very low in determining the first PCs and, hence,
the SOM structure. On the other hand, exactly distinguishing
via automatic classification between clusters 1 and 4 is not of
particular importance, since the same physical processes are
expected to occur in the two. Furthermore, a quick glance at
the spacecraft spatial coordinates can clarify in which sector
it is.

Relatively more concerning is the fact that several points
in the sunward inner magnetosphere at time t0+ 225 min are
identified as inner magnetosheath plasma in Fig. 6c and f.
While training the SOM with several feature combinations
in Sect. 4.3, we notice that this particular region is perhaps
the most difficult to classify correctly, especially in cases,
like this one, where the classifiers are trained at a different
time with respect to the classified points. A possible expla-
nation for this particular misclassification comes from Fig. 1.
There, we notice that the plasma density and pressure in the
sunwards inner magnetospheric regions have values compat-
ible with those of certain inner magnetosheath regions. This
may have pulled the nodes mapping to the two regions close
in the SOM, and in fact, we see that clusters 3 and 5 are
neighbors in the feature maps of Fig. 5.

In Fig. 6g–i, we explore classification results in the case
of a mixed time (time variable – TV) training data set, in the
meridional plane only.
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In our visualization procedure, the cluster number (and,
hence, the cluster color) is arbitrarily assigned. Hence, clus-
ters mapping to the same magnetospheric regions may have
different colors in classification experiments with different
feature sets. For easier reading, we match a posteriori the
cluster colors in the different classification experiments to
those in Fig. 4.

Contrary to what was shown before, now we train our
map with points from three different simulated times, namely
t0+ 125, 175, and 200 min. The features used are the F1
feature set, and the map hyperparameters are q = 10× 12,
ε0 = 0.25, and σ0 = 1. The classified data points are a vali-
dation set from t = t0+ 150, 210, and 225 min. We see that
the classification results agree quite well with those shown
in Fig. 6a–c. One minor difference is the fact that the two
magnetosheath clusters just downstream of the box shock do
not change significantly with time in Fig. 6d to f, while they
did so in Fig. 6a to c. Another difference can be observed
in the inner magnetospheric region. In Fig. 6c, inner mag-
netospheric plasma at t0+ 225 was misclassified as magne-
tosheath plasma. In Fig. 6g, inner magnetospheric plasma at
t0+150 min is misclassified as boundary layer plasma, which
is possibly a less severe misclassification. In Fig. 6i, the num-
ber of misclassified points in the inner magnetosphere is neg-
ligible with respect to Fig. 6c.

4.2.2 Comparison with different unsupervised
classification methods

Another form of model validation consists of comparing
classification results with those from another unsupervised
classification model. Here, we compare with pure k-means
classification.

In Fig. 7 we present, in panels (a), (b), and (c), the clas-
sification results for the x/RE = 0, y/RE = 0, and z/RE = 0
planes at time t0+ 210 min (panels b and c are reproduced
here from Fig. 4 for ease of reading). We contrast them in
panels (d), (e), and (f) with k-means classification and also
with k = 7, using the same features and in the same planes.

Comparing panels (a) and (d), (b) and (e), and (c) and (f) in
Fig. 7, we see that the two classification methods give quite
similar results. We had remarked, in Fig. 4, on the fact that
few points, possibly located inside the bow shock, are classi-
fied as inner magnetosheath plasma (orange). We notice that
the same happens in In Fig. 7d–f.

One difference between the two methods is visible in pan-
els (b) and (e): the magnetosheath cluster associated to the
northern sector extends a few points further southwards in
panel (e) than in panel (b). This is a minimal difference that
can be explained with the fact that the two clusters map to
very similar plasma, as remarked previously.

A rather more significant difference can be seen when
comparing panel (c) and (f). In panel (f), some plasma re-
gions rather close to Earth and deep into the inner magneto-
sphere are classified as magnetosheath plasma (brown) rather

than as inner magnetospheric plasma (green). In panel (c),
they are classified as the latter (green), which is a classifica-
tion that appears more appropriate for the region, given its
position.

To compare the two classification methods quantitatively,
we calculate the number of points which are classified in the
same cluster with a SOMs plus k-means vs. pure k-means
classification. A total of 92.15 % of the points are classified
in the same cluster, and 92.74 % of the two magnetosheath
clusters just downstream of the bow shock are considered the
same. These percentages are calculated on the entire training
data set at time t0+ 210 min, of which cuts are depicted in
the panels in Fig. 7.

We, therefore, conclude that the classification of SOM
nodes and simple k-means classification globally agree. An
advantage of using SOM with respect to k-means is that the
former reduces the misclassification of a section of inner
magnetospheric plasma, which is the region most challeng-
ing to classify correctly. Furthermore, SOM feature maps
give a better representation of feature variability within each
cluster than k-means centroids. This representation can be
used to assess feature variability within the cluster. In k-
means, only the feature values at the centroid (meaning, one
value per class) are available.

4.3 On the choice of training features

Up to now, we have used the three components of the mag-
netic field and of the velocity and the logarithms of the
plasma density, pressure, and temperature as features for
SOM training. We label this feature set F1 in Table 1, where
we list several other feature sets with which we experiment.
In this section, we show classification results for different
feature sets, listed in Table 1, and we aim at obtaining some
insights into what constitutes a good set of features for our
classification purposes.

The SOM hyperparameters are the same in all cases, i.e.,
q = 10× 12, σ0 = 1, and ε0 = 0.25. In all cases, k = 7. The
data used for the training are from t0+210 min. In Figs. 8, 9,
and 10, validation (V) data sets are depicted.

In Fig. 8a–c, we show sub-standard classification results
obtained with non-optimal feature sets. In panel (a), F1 NL
(not logarithm) uses density, pressure, and temperature rather
than their logarithms. In panel (b), F2, we eliminate the log-
arithm of the plasma density from the feature list, i.e., the
most relevant feature for the calculation of the PCs for F1. In
panel (c), F3, we do not use the Sun–Earth velocity. We see
that F1 NL groups together magnetosheath and solar wind
plasma (probably the biggest possible classification error),
and inner magnetospheric regions are not as clearly separated
as in F1. F2 mixes inner magnetospheric and boundary layer
data points (green and cyan) and magnetosheath regions just
downstream of the bow shock and internal magnetosheath re-
gions (orange). With F3, some inner magnetospheric plasma
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Figure 7. Unsupervised k-means classification of trained SOM nodes, with k = 7 (a–c), and pure k-means classification, with k = 7 (d–f).
The feature set is F1, and the time is t0+ 210 min. The training (T) data set is depicted.

is classified as magnetosheath plasma, which is already at
t0+ 210 min.

When analyzing satellite data, variables such as the Alfvén
speed vA, the Alfvén Mach numberMA, and the plasma beta
β provide precious information on the state of the plasma.
In Fig. 8d–f, we show training set results for the F4, F5,
and F6 feature sets, where we add to our usual feature list,
F1, and the logarithm of vA, MA, and β, respectively. Us-
ing as features the logarithm of variables, such as n, pp, T ,
vA, MA, and β, which vary across orders of magnitude (see
Fig. 1), is one of the lessons learned from Fig. 8a. Comparing
Fig. 8d–f with Fig 4, we see that introducing log(vA) in the
feature list slightly alters the classification results. What we
called the boundary layer cluster in Fig. 4 does not include, in
F4, points at the boundary between the lobes and the magne-
tosheath. Perhaps more relevant is the fact that the boundary
layer and inner magnetospheric clusters (green and cyan) ap-
pear to be less clearly separated than in F1. The classification
obtained with F5 substantially agrees with F1. With F6, the
boundary layer cluster is slightly modified with respect to F1.

In Table 3 (second column – S), we report the percentage
of data points classified in the same cluster as F1 for each
of the feature sets of Table 1 for the validation data set at
t0+210 min. In the third column (M), we consider clusters 1
and 4 as being a single cluster. In the previous analysis, we
remarked that clusters 1 and 4 (the two magnetosheath clus-
ters just downstream of the bow shock) map to the same kind
of plasma. We take this into account when comparing classi-
fication results with F1. The metrics depicted in Table 3 can-
not be used to assess the quality of the classification per se,
since we are not comparing against ground truth but merely

Table 3. Percentage of data points classified in the same cluster as
F1 for the different feature sets (second column – S). In the third
column (M), the two magnetosheath clusters just downstream of
the bow shock, i.e., 1 and 4, are considered one. The data set used
is the validation data set at time t0+ 210 min.

Case S M

F1-TV 80.71 85.72
F1-NL 59.83 61.47
F2 84.69 84.71
F3 87.85 89.01
F4 82.70 83.01
F5 93.07 94.42
F6 91.02 92.36
F7 83.38 84.77
F8 91.55 91.78
F9 66.05 75.67
F10 92.49 93.90

against another classification experiments. However, it gives
us a quantitative measure of how much different classifica-
tion experiments agree.

Comparing Fig. 8 with the Table 3 results, we see, as one
could expect, that substandard feature sets (F1 NL, F2, and
F3) agree less with the F1 classification than F4, F5, and F6.
This is the case with F1 NL in particular, which exhibits the
lower percentage of similarly classified points with respect to
F1. We see that the agreement is particularly good with F5,
as already noticed in Fig. 8.
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Figure 8. Validation plots at t0+210 min in the y/RE = 0 plane from SOMs trained with feature sets F1 NL, F2, F3, F4, F5, and F6. F1 NL
uses density, pressure, and temperature rather than their logarithms. F2 does not include log(n), and F3 does not include vx . F4, F5, and F6
add the logarithms of Alfvén speed vA, the Alfvénic Mach number MA, and the plasma beta β, respectively, to the feature set F1.

Figure 9. Classification of validation data sets. y/RE = 0 plane at t0+ 150, 210, and 225 min for maps trained with the F7 and F8 feature
sets. In F7, Bx , By , and Bz are not used for the map training. In F8, Bx , By , and Bz are clipped as described in Sect. 4.

When discussing Table 2, we remarked on the seemingly
negligible role that the magnetic field components appear to
have in determining the first three PCs, both when their val-
ues are not clipped (F1 feature set) and when they are (F8
feature set – B clipped). Here, we investigate if this reflects
in classification results.

In Fig. 9, we show the classification of validation data sets
at time t0+150, 210, and 225 min for the F7 feature set (pan-
els a to c which do not include the magnetic field) and for
F8 (panels d to f; where the magnetic field components are
present but clipped as described in Sect. 2).
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Figure 10. Classification of validation data sets. y/RE = 0 plane at t0+ 150, 210, and 225 min for maps trained with the F9 and F10 feature
sets. In F9 and F10, the module of the magnetic field, instead of its components, is used. In F9, |B| is clipped, as described in Sect. 4. In F10,
the logarithm of the module of the magnetic field is used.

Comparing Fig. 9a–f with Fig. 6 (the validation plot for
F1), we see that the identified clusters are indeed rather sim-
ilar, including the variation with time of the outer magne-
tosheath clusters (see the discussion of Fig. 6). The main dif-
ference with Fig. 6 is the fact that, in the F7 case, the bound-
ary layer cluster does not include most of the data points at
the boundary between the lobe and magnetosheath plasma
(this reflects in the percentage of similarly classified points
in Table 3). The boundary layer cluster for F8, instead, cor-
responds quite well with F1. As already observed in Fig. 6,
inner magnetospheric plasma is the most prone to misclas-
sification in the validation test. In the case without magnetic
field, in F7, as also in F1, the misclassified inner magneto-
spheric plasma is assigned to the inner magnetosheath clus-
ter. In F8, it is assigned to either boundary layer plasma, at
time t0+ 150 min, or to one of the magnetosheath clusters
just downstream of the bow shock, at t0+ 225 min.

In Fig. 10a–c, we plot the classification results for the val-
idation data sets for a map trained with feature set F9, where,
instead of the three components of the magnetic field, we
use only its magnitude, which is clipped as described above.
We see that the green and blue clusters correspond to the re-
gions of highest magnetic field closer to the Earth. The green
and blue regions map to high-|B| regions of the inner mag-
netosphere and lobes, respectively. We notice that, with this
choice of features, the inner magnetospheric is consistently
classified as such at different simulated times, contrary to
what happened with feature sets previously discussed. The
remaining inner magnetospheric plasma is classified together
with the current sheet in the cyan cluster (while in F1 the

inner magnetosphere and current sheets were clearly sepa-
rated), which does not include plasma at the boundary be-
tween magnetosheath and lobes. Magnetosheath plasma just
downstream of the bow shock is now classified in a single
cluster. This classification is consistent with our knowledge
of the magnetosphere and is very robust to temporal varia-
tion. However, it differs significantly from F1 classification,
hence the low percentage of similarly classified points in
Fig. 3.

F10, depicted in panels (d) to (f), looks remarkably similar
to F1 (see also Table 3), especially in the internal regions, in-
cluding the misclassification of some inner magnetospheric
points as magnetosheath plasma at t0+ 225 min. The three
magnetosheath clusters vary at the three different times de-
picted with respect to F1. This behavior, and the pattern of
classification of magnetosheath plasma in F9, shows that the
magnetic field is a feature of relevance in classification, es-
pecially for magnetosheath regions. F10 classification results
show that the blue cluster in F9 originates from the clipping
procedure. This somehow artificial procedure is, however,
beneficial for inner magnetospheric points which are not mis-
classified in that case.

From this analysis, we learn important lessons on possi-
ble different outcomes of the classification procedure and on
how to choose features for SOM training.

First of all, we can divide our feature sets into acceptable
and substandard. Substandard feature sets are those, such as
F1 NL and F2, that fail to separate plasma regions charac-
terized by highly different plasma parameters. Examining
the feature list in F1 NL, the reason for this is obvious. As
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one can see from a glance at Fig. 1g–l, only using a loga-
rithmic representation allows us to appreciate how features
that span orders of magnitude vary across magnetospheric
regions. The lesson learned here is to use the data representa-
tion that more naturally highlights differences in the training
data.

In F2, we excluded log(n) from the feature list, which ex-
presses a large percentage of the variance of the training set,
with poor classification results. A good rule of thumb is to
always include these kind of variables into the training set.

With the exception of F1 NL and F2, all feature sets pro-
duce classification results which are, first of all, quite similar
and generally reflect our knowledge of the magnetosphere
well. Differences arise with the inclusion of extra variables,
such as in Fig. 8d–f, where we add log(vA), log(MA), and
log(β) to F1. All these quantities are derived from base sim-
ulation quantities and, while quite useful to the human sci-
entist, do not seem to improve classification results here. In
fact, occasionally they appear to degrade them; at least, this
is the case in panel (d). These preliminary results therefore
point in the direction of not including, somehow, duplicated
information into the training set. One might even argue that
the algorithm is smart enough to see such derived variables
as long as the underlying variables are given.

Some feature sets, F1 (Figs. 4 and 6) and F9 (Fig. 10),
raise our particular interest. Other feature sets, such as F5,
F6, and F10, albeit interesting in their own right, essentially
reproduce the results of F1. Both F1 and F9 produce clas-
sification results which, albeit somehow different, separate
well-known magnetospheric regions. In F9, less information
than in F1 is made available to the SOM; we use magnetic
field magnitude rather than magnetic field components for
the training. This results in two clusters, green and blue,
that clearly correspond to high-|B| points, whose values have
been clipped as described above. This classification appears
more robust to temporal variation than F1, perhaps because
all three PCs (and not just the first two, as for F1) present
well-defined multi-peaked distributions. This confirms the
well-known fact that multi-peaked distributions of the input
data are a very relevant factor in determining classification
results.

We remark that these insights have to be further tested
against different classification problems and may be some-
how dependent on the classification procedure we chose in
our work.

5 Conclusions

The growing amount of data produced by magnetospheric
missions is amenable to the application of ML classification
methods that could help in clustering the hundreds of gigabits
of data produced every day by missions such as MMS into
a small number of clusters characterized by similar plasma
properties. Argall et al. (2020), for example, argue that ML

models could be used to analyze magnetospheric satellite
measurements in steps. First, region classifiers would sep-
arate between macro-regions, as the model we propose here
does. Then, specialized event classifiers would target local,
region-specific, processes.

Most of the classification works focusing on the mag-
netosphere consist of supervised classification methods. In
this paper, instead, we present an unsupervised classifica-
tion procedure for large-scale magnetospheric regions based
on Amaya et al. (2020), where 14 years of ACE solar wind
measurements are classified with a techniques based on
SOMs. We choose an unsupervised classification method to
avoid relying on a labeled training set, which risks introduc-
ing the bias of the labeling scientists into the classification
procedure.

As a first step towards the application of this methodol-
ogy to spacecraft data, we verify its performance on sim-
ulated magnetospheric data points obtained with the MHD
code OpenGGCM-CTIM-RCM. We chose to start with sim-
ulated data since they offer several distinct advantages. First
of all, we can, for the moment, bypass issues such as instru-
ment noise and instrument limitations that are unavoidable
with spacecraft data. Data analysis, de-noising, and prepro-
cessing are fundamental components of ML activities. With
simulations, we have access to data from a controlled en-
vironment that need minimal preprocessing and allow us to
focus on the ML algorithm for the time being. Furthermore,
the time/space ambiguity that characterizes spacecraft data is
not present in simulations, and it is relatively easy to qualita-
tively verify classification performance by plotting the classi-
fied data in the simulated space. Performance validation can
be an issue for magnetospheric unsupervised models work-
ing on spacecraft data. A model such as ours, trained and
validated against simulated data points, could be part of an
array of tests against which unsupervised classifications of
magnetospheric data could be benchmarked.

The code we are using to produce the simulation is MHD.
This means that kinetic processes are not included in our
work and that variables available in observations, such as par-
allel and perpendicular temperatures and pressures and mo-
ments separated by species, are not available to us at this
stage. This is certainly a limitation of our current analysis.
This limitation is somehow mitigated by the fact that we are
focusing on the classification of large-scale regions. Future
work, on kinetic simulations and spacecraft data, will assess
the impact of including kinetic variables among the classifi-
cation features.

We obtain classification results, e.g., Figs. 4 and 10, that
match our knowledge of the terrestrial magnetosphere, ac-
cumulated over decades of observations and scientific in-
vestigation, surprisingly well. The analysis of the SOM fea-
ture maps (Fig. 5) shows that the SOM node values associ-
ated with the different features represent the feature variabil-
ity across the magnetosphere well, at least for the features
that contribute most to determining the principal components
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used for the SOM training. Roaming across the feature map,
we obtain hints of the processes characterizing the different
clusters (see the discussion on plasma compression and heat-
ing across the bow shock).

Our validation analysis in Sect. 4.2 shows that the clas-
sification procedure is quite robust to temporal evolution in
the magnetosphere. In particular, consistent results are pro-
duced with the opposite orientation of the Bz IMF compo-
nent, which has profound consequences for the magneto-
spheric configuration.

Since this work is intended as a starting point rather than
as a conclusive analysis, we report in detail on our explo-
ration activities in terms of SOM hyperparameters (Sect. A)
and feature sets (Sect. 4.3). We hope that this work will con-
stitute a useful reference for colleagues working on similar
issues in the future. In Sect. 4.3 in particular, we highlight our
lessons learned when exploring classifications with differ-
ent feature sets. They can be summarized as follows: (a) the
most efficient features are characterized by multi-peaked dis-
tributions, (b) when feature values are spread over orders of
magnitude, a logarithmic representation is preferable, (c) a
preliminary analysis on the percent variance expressed by
each potential feature can convey useful information on fea-
ture selection, (d) derived variables do not necessarily im-
prove classification results, and (e) different choices of fea-
tures can produce different but equally significant classifica-
tion results.

In this work, we have focused on the classification of
large-scale simulated regions. However, this is only one of
the classification activities one may want to be able to per-
form on simulated, or observed, data. Other activities of in-
terest may be the classification of mesoscale structures, such
as depolarizing flux bundles or reconnection exhausts. This
seems to be within the purview of the method, assuming
that an appropriate number of clusters is used and that the
simulations used to produce the data are resolved enough.
To increase the chances of meaningful classification of the
mesoscale structure, one may consider applying a second
round of unsupervised classification on the points classified
in the same, large-scale cluster. Another activity of interest
could be the identification of points of transition between do-
mains. Such an activity appears challenging in the absence,
among the features used for the clustering, of spatial and tem-
poral derivatives. We purposefully refrained from using them
among our training features, since we are aiming for a local
classification model that does not rely on higher-resolution
sampling either in space or time.

Several points are left for future work. It should be inves-
tigated whether our classification procedure, while satisfac-
tory at this stage, could be improved. Possible avenues of
improvement could be the use of a dimensionality reduction
technique that does not rely on linear correlation between
the features or the use of dynamic (Rougier and Boniface,
2011b) rather than static SOMs.

As an example, in Amaya et al. (2020), more advanced
preprocessing techniques were experimented with, which
will most probably prove useful when we will move to the
more challenging environment of spacecraft observations (as
opposed to simulations). Furthermore, Amaya et al. (2020)
employed windows of time in the classification, which we
have not used in this work in favor of an instantaneous ap-
proach. In future work, we intend to verify which approach
gives better results.

It should also be verified whether similar modifications
reduce the misclassification of inner magnetospheric points
observed with a number of feature sets, including F1, and if
they reduce the importance or outright eliminate the need of
looking for optimal sets of training features.

The natural next step of our work is the classification of
spacecraft data. There, many more variables not included in
an MHD description will be available. They will probably
constitute both a challenge and an opportunity for unsuper-
vised classification methods and will allow us to attempt clas-
sification aimed at smaller-scale structure, where such vari-
ables are expected to be essential. Such procedures will be
aimed not at competing in accuracy with supervised classi-
fications, but they will hopefully be pivotal in highlighting
new processes.

Appendix A: Exploring the SOM hyperparameters:
node number, initial lattice neighbor width, and learning
rate

SOMs are characterized by several hyperparameters
(Sect. 3), including the number of rows Lr and of columns
Lc, the initial learning rate ε0, and the initial lattice neighbor
width σ0. In this section, we explore how changing the
hyperparameters changes the convergence of the map. The
features we use are F1 in Table 1. Libraries for the automatic
selection of SOM hyperparameters are available; however,
we prefer, at this stage, manual hyperparameter selection to
familiarize ourselves with the classification procedure and
expected outcomes in different simulated scenarios.

In Fig. A1, we see the evolution of the quantization er-
ror QE (Eq. 4) with the number of iterations, τ , changing
the number of nodes (panel a), the initial learning rate ε0
(panel b), and the initial lattice neighbor width σ0 (panel c).
The number of iterations used is larger than three epochs
to ensure that each training data point is presented to the
SOM an adequate number of times. In Fig. A1a–c, the stan-
dard deviation of the quantization errors strongly reduces as
a function of the iteration number, which is a consequence of
the iteration-number-dependent evolution we impose on the
learning rate and on the lattice neighbor width.

A more recent version of the SOM that does not depend on
the iteration number has been proposed by Rougier and Boni-
face (2011a). This dynamic self-organizing map (DSOM)
has been successfully used by Amaya et al. (2020) to clas-
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Figure A1. Hyperparameter selection. In panels (a)–(c), evolution of the quantization error QE with the number of iterations τ changing the
SOM node number (q; panel a), initial learning rate (ε0; panel b), and initial lattice neighbor width (σ0; panel c). In panels (d)–(f), code
words 0 and 1 associated with SOM nodes (in bright colors) are superimposed to the input point distribution (blue background) for a SOM
with q = 10×12 nodes, initial learning rate ε0 = 0.25, and initial lattice neighbor width σ0 = 1 (d), with 3 (e), and 6 (f) at the final iteration.
In the animation, we show the evolution of the node positions with the iteration number. The white lines connect node (3,3) to its nearest
neighbors.

sify different solar wind types. In this work, we have decided
to use the original SOM algorithm as the results already show
very good convergence to meaningful classes.

In Fig. A1a, we observe that the quantization error de-
creases with an increasing number of nodes. This is not sur-
prising since the quantization error measures the average dis-
tance between each input data point and its BMU. With a
larger number of nodes, this distance naturally decreases. In
panel b, we see that decreasing the initial learning rate ε0
does not change the average error value significantly. How-
ever, smaller oscillations around the average value are ob-
served with lower learning rates. In panel (c), we observe
that changing the initial lattice neighbor width σ0 has a sig-
nificant impact on the quantization error. The reason is clear
when looking at panels (d) to (f) and the respective anima-
tions.

In panels (d) to (f), we depict the code words associ-
ated with the SOM nodes obtained with σ0 = 1 (panel d), 3
(panel e), and 6 (panel f) as colored dots. Each of the brightly
colored dots corresponds to one of thewi , with 0≤ i < q and
q = 10×12 (defined in Sect. 3). The code words are depicted
in the reduced space obtained after dimensionality reduction
of the original features with PCA. Of the three principal com-
ponents, PCs, that characterize the reduced space, we show
here only the PC0 vs. PC1 distribution. The darker, contin-
uous background shows the distribution of the code words
associated with the input points (i.e., the xτ in Sect. 3), again
for PC 0 and 1. We see in panel (d) that the nodes (i.e.,
the dots) superimpose the data distribution well. In partic-
ular, higher node density is observed in correspondence with
the darker areas of the underlying distribution where the data

point density is higher. There are no SOM nodes in the white
area where data points are not present. With larger values
of σ0, panels (e) and (f), we observe that the node distribu-
tion maps the data distribution less optimally. Larger lattice
widths mean that a single new data point significantly affects
a larger number of SOM nodes. High values of σ0, then, drag
a large number of map nodes closer to the location in the PC0
vs. PC1 plot of every new data point. We see this in the ani-
mation of panels (d) to (f) of Fig. A1, where the SOM nodes
move across the PC0 vs. PC1 plane as a function of the itera-
tion number τ for the different lattice neighbor width values.

At the end of this manual hyperparameter investigation,
we choose q = 10× 12, ε0 = 0.25, and σ0 = 1 for our maps.

Appendix B: Classification evolution with the cluster
number

In this Appendix, we explore how the classification of mag-
netospheric regions changes when the number of k-means
clusters k used to classify the SOM nodes is reduced. In
all the cases described here (as in the rest of the paper, un-
less otherwise specified), the SOM map is obtained with the
F1 features in Table 1 and with q = 10× 12, ε0 = 0.25, and
σ0 = 1. The k = 7 case is further described in Sect. 4.1.

In Fig. B1, we show the classification results with k = 6
(panels a and b) and k = 5 (panels c and d). The data depicted
are the training data set. The k = 7 case is depicted in Fig. 4.
In panels (a) and (c) and (b) and (d), we depict the simulated
meridional and equatorial plane, with the data points colored
according to their respective clusters. Following the changes
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Figure B1. y/RE = 0 (a, c) and z/RE = 0 (b, d) cuts with k = 6 (a,
b) and k = 5 (c, d). The training data set is depicted.

Figure B2. The k-means classification with k = 6 (a, b) and k =
5 (c, d) for the data points in the meridional (a, c) and equatorial (b,
d) planes. The training data set is depicted.

from k = 7 to k = 5 allows us to have better insights into
our classification procedure and also highlights which of the
magnetospheric regions are more similar in terms of plasma
parameters.

In panels (a) and (b), we plot k = 6. Comparing them with
Fig. 4, we see that reducing the number of clusters of one unit
merges the three magnetosheath clusters (brown, orange, and
blue) into two (blue and orange). This is consistent with the
fact that the magnetosheath clusters, and in particular clus-
ters 4 (brown) and 1 (blue) with k = 7, map to quite similar

plasmas. The more internal clusters (inner magnetosphere,
boundary layers, and lobes) are not affected.

Further reducing to number of clusters to k = 5, instead,
mostly affects the internal clusters. The boundary layer clus-
ter disappears, and the points that mapped to it are, quite
sensibly, assigned to the clusters mapping to inner magne-
tospheric (this is mostly the case for current sheet plasma),
magnetosheath or lobe plasma (the points at the boundary be-
tween lobes and magnetosheath). Some inner magnetosphere
points are misclassified as magnetosheath plasma. With both
k = 6 and k = 5, the solar wind cluster, which differs the
most from the others, is left unaltered.

In Fig. B2, we depict the pure k-means classification with
k = 6 (panels a and b) and k = 5 (panels c and d) for data
points in the meridional (panels a and c) and equatorial (pan-
els b and d) planes to be compared with the SOM classifi-
cation depicted in Fig. B1. We do not notice any significant
difference between the SOM and k-means classification for
k = 5; for k = 6, we notice, as already with k = 7, that the
SOM classification reduces the misclassification of internal
magnetospheric points.

In summary, decreasing k from a larger to a smaller num-
ber produces a more coarse-grained classification. Generally
speaking, every time k is decreased, the three clusters map-
ping to the most similar plasma reorganize and coalesce into
two. This process shows which magnetospheric regions are
most similar.
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