Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-85-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-85-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach
Markus Battarbee
CORRESPONDING AUTHOR
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Thiago Brito
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Markku Alho
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Grandin
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Konstantinos Papadakis
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Andreas Johlander
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Lucile Turc
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Dubart
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Space Physics Research group, Department of Physics, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174, https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and experienced technological disruptions during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Numerical simulation studies
Magnetotail reconnection asymmetries in an ion-scale, Earth-like magnetosphere
Crescent-shaped electron velocity distribution functions formed at the edges of plasma jets interacting with a tangential discontinuity
Christopher M. Bard and John C. Dorelli
Ann. Geophys., 39, 991–1003, https://doi.org/10.5194/angeo-39-991-2021, https://doi.org/10.5194/angeo-39-991-2021, 2021
Short summary
Short summary
We use a computer code to study how a particular plasma effect, the Hall effect, changes how plasma behaves and interacts with magnetic fields behind planets in the magnetotail. We find that when the scale of the Hall effect is big enough compared to the scale of the magnetotail, plasma behavior is no longer symmetric. Measurements of magnetic activity and structure vary in time and differ between opposite sides of the tail. This fits well with findings from spacecraft data and other models.
Gabriel Voitcu and Marius Echim
Ann. Geophys., 36, 1521–1535, https://doi.org/10.5194/angeo-36-1521-2018, https://doi.org/10.5194/angeo-36-1521-2018, 2018
Short summary
Short summary
The frontal region of Earth's magnetic shield, the magnetopause, is very often impacted by high-speed jets of solar origin that can trigger multiple geophysical effects. Our study brings novel results that contribute to understanding the dynamics of such structures. We performed advanced simulations and demonstrate the formation of a peculiar particle distribution of the energy (the crescent-shaped electron distribution) at the edges of plasma jets interacting with the magnetopause.
Cited articles
Akhavan-Tafti, M., Palmroth, M., Slavin, J. A., Battarbee, M., Ganse, U.,
Grandin, M., Le, G., Gershman, D. J., Eastwood, J. P., and Stawarz, J. E.:
Comparative Analysis of the Vlasiator Simulations and MMS Observations of
Multiple X-Line Reconnection and Flux Transfer Events, J. Geophys. Res.-Space, 125, e2019JA027410, https://doi.org/10.1029/2019JA027410, 2020. a
Artemyev, A. V., Baumjohann, W., Petrukovich, A. A., Nakamura, R., Dandouras,
I., and Fazakerley, A.: Proton/electron temperature ratio in the magnetotail,
Ann. Geophys., 29, 2253–2257, https://doi.org/10.5194/angeo-29-2253-2011, 2011. a
Artemyev, A. V., Petrukovich, A. A., Nakamura, R., and Zelenyi, L. M.: Profiles
of electron temperature and Bz along Earth's magnetotail, Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, 2013. a
Artemyev, A. V., Walsh, A. P., Petrukovich, A. A., Baumjohann, W., Nakamura,
R., and Fazakerley, A. N.: Electron pitch angle/energy distribution in the
magnetotail, J. Geophys. Res.-Space, 119, 7214–7227,
https://doi.org/10.1002/2014JA020350, 2014. a
Artemyev, A. V., Angelopoulos, V., Liu, J., and Runov, A.: Electron currents
supporting the near-Earth magnetotail during current sheet thinning,
Geophys. Res. Lett., 44, 5–11, https://doi.org/10.1002/2016GL072011, 2017. a
Asano, Y., Nakamura, R., Runov, A., Baumjohann, W., McIlwain, C., Paschmann,
G., Quinn, J., Alexeev, I., Dewhurst, J. P., Owen, C. J., Fazakerley, A. N.,
Balogh, A., Rème, H., and Klecker, B.: Detailed analysis of low-energy
electron streaming in the near-Earth neutral line region during a substorm,
Adv. Space Res., 37, 1382–1387, https://doi.org/10.1016/j.asr.2005.05.059, 2006. a, b
Balsara, D. S.: Divergence-free reconstruction of magnetic fields and WENO
schemes for magnetohydrodynamics, J. Comput. Phys., 228,
5040–5056, https://doi.org/10.1016/j.jcp.2009.03.038, 2009. a, b
Battarbee, M. and the Vlasiator team: Analysator: python analysis toolkit, Zenodo, https://doi.org/10.5281/zenodo.4462515, 2020. a
Bessho, N., Chen, L.-J. J., Shuster, J. R., and Wang, S.: Electron distribution
functions in the electron diffusion region of magnetic reconnection:
Physics behind the fine structures, Geophys. Res. Lett., 41,
8688–8695, https://doi.org/10.1002/2014GL062034, 2014. a
Bessho, N., Chen, L.-J. J., and Hesse, M.: Electron distribution functions in
the diffusion region of asymmetric magnetic reconnection, Geophys. Res. Lett., 43, 1828–1836, https://doi.org/10.1002/2016GL067886, 2016. a
Birdsall, C. K. and Langdon, A. B.: Plasma physics via computer simulation,
Taylor and Francis, New York, 2005. a
Boris, J. P.: Relativistic plasma simulation-optimization of a hybrid code, Proceedings of Fourth Conference on Numerical Simulations of Plasmas, Naval Research Laboratory, Washington D.C., USA, 2–3 November 1970. a
Breuillard, H., Le Contel, O., Retino, A., Chasapis, A., Chust, T., Mirioni,
L., Graham, D. B., Wilder, F. D., Cohen, I., Vaivads, A., Khotyaintsev,
Y. V., Lindqvist, P.-A., Marklund, G. T., Burch, J. L., Torbert, R. B.,
Ergun, R. E., Goodrich, K. A., Macri, J., Needell, J., Chutter, M., Rau, D.,
Dors, I., Russell, C. T., Magnes, W., Strangeway, R. J., Bromund, K. R.,
Plaschke, F., Fischer, D., Leinweber, H. K., Anderson, B. J., Le, G., Slavin,
J. A., Kepko, E. L., Baumjohann, W., Mauk, B., Fuselier, S. A., and Nakamura,
R.: Multispacecraft analysis of dipolarization fronts and associated whistler
wave emissions using MMS data, Geophys. Res. Lett., 43, 7279–7286,
https://doi.org/10.1002/2016GL069188, 2016. a
Burch, J. L. and Phan, T. D.: Magnetic reconnection at the dayside
magnetopause: Advances with MMS, Geophys. Res. Lett., 43,
8327–8338, https://doi.org/10.1002/2016GL069787, 2016. a, b
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric
Multiscale Overview and Science Objectives, Space Sci. Rev., 199,
5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016a. a, b
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun,
R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., Argall, M. R., Wang,
S., Hesse, M., Pollock, C. J., Giles, B. L., Nakamura, R., Mauk, B. H.,
Fuselier, S. A., Russell, C. T., Strangeway, R. J., Drake, J. F., Shay,
M. A., Khotyaintsev, Y. V., Lindqvist, P.-A., Marklund, G., Wilder, F. D.,
Young, D. T., Torkar, K., Goldstein, J., Dorelli, J. C., Avanov, L. A., Oka,
M., Baker, D. N., Jaynes, A. N., Goodrich, K. A., Cohen, I. J., Turner,
D. L., Fennell, J. F., Blake, J. B., Clemmons, J., Goldman, M., Newman, D.,
Petrinec, S. M., Trattner, K. J., Lavraud, B., Reiff, P. H., Baumjohann, W.,
Magnes, W., Steller, M., Lewis, W., Saito, Y., Coffey, V., and Chandler, M.:
Electron-scale measurements of magnetic reconnection in space, Science, 352, aaf2939, https://doi.org/10.1126/science.aaf2939, 2016b. a, b
Burch, J. L., Dokgo, K., Hwang, K. J., Torbert, R. B., Graham, D. B., Webster,
J. M., Ergun, R. E., Giles, B. L., Allen, R. C., Chen, L. J., Wang, S.,
Genestreti, K. J., Russell, C. T., Strangeway, R. J., and Le Contel, O.:
High-Frequency Wave Generation in Magnetotail Reconnection:
Linear Dispersion Analysis, Geophys. Res. Lett., 46,
4089–4097, https://doi.org/10.1029/2019GL082471, 2019. a
Cattell, C., Dombeck, J., Wygant, J., Drake, J. F., Swisdak, M.,
Goldstein, M. L., Keith, W., Fazakerley, A., André, M., Lucek,
E., and Balogh, A.: Cluster observations of electron holes in association
with magnetotail reconnection and comparison to simulations, J. Geophys. Res.-Space, 110, A01211,
https://doi.org/10.1029/2004JA010519, 2005. a
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya,
J., Markidis, S., and Brackbill, J. U.: Two-way coupling of a global
Hall magnetohydrodynamics model with a local implicit particle-in-cell
model, J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya, J.,
Markidis, S., and Brackbill, J. U.: Two-way coupling of a global Hall
magnetohydrodynamics model with a local implicit particle-in-cell model,
J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J.,
Bergen, B., and Bowers, K. J.: Role of electron physics in the development of
turbulent magnetic reconnection in collisionless plasmas, Nat. Phys., 7,
539–542, https://doi.org/10.1038/nphys1965, 2011. a
Deca, J., Divin, A., Lembège, B., Horányi, M., Markidis, S., and Lapenta, G.:
General mechanism and dynamics of the solar wind interaction with lunar
magnetic anomalies from 3-D particle-in-cell simulations, J. Geophys. Res.-Space, 120, 6443–6463,
https://doi.org/10.1002/2015JA021070,
2015. a
Deca, J., Divin, A., Henri, P., Eriksson, A., Markidis, S., Olshevsky, V., and
Horányi, M.: Electron and Ion Dynamics of the Solar Wind
Interaction with a Weakly Outgassing Comet, Phys. Rev. Lett.,
118, 205 101, https://doi.org/10.1103/PhysRevLett.118.205101, 2017. a
Deca, J., Henri, P., Divin, A., Eriksson, A., Galand, M., Beth, A.,
Ostaszewski, K., and Horányi, M.: Building a Weakly Outgassing Comet
from a Generalized Ohm's Law, Phys. Rev. Lett., 123, 055101,
https://doi.org/10.1103/PhysRevLett.123.055101, 2019. a
Dong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A., DiBraccio,
G. A., and Germaschewski, K.: Global Ten-Moment Multifluid Simulations of the
Solar Wind Interaction with Mercury: From the Planetary Conducting Core to
the Dynamic Magnetosphere, Geophys. Res. Lett., 46,
11584–11596, https://doi.org/10.1029/2019GL083180, 2019. a
Dungey, J. W.: Interplanetary magnetic field and the auroral zones,
Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a
Ergun, R. E., Holmes, J. C., Goodrich, K. A., Wilder, F. D., Stawarz,
J. E., Eriksson, S., Newman, D. L., Schwartz, S. J., Goldman, M. V.,
Sturner, A. P., Malaspina, D. M., Usanova, M. E., Torbert, R. B.,
Argall, M., Lindqvist, P. A., Khotyaintsev, Y., Burch, J. L.,
Strangeway, R. J., Russell, C. T., Pollock, C. J., Giles, B. L.,
Dorelli, J. J. C., Avanov, L., Hesse, M., Chen, L. J., Lavraud, B.,
Le Contel, O., Retino, A., Phan, T. D., Eastwood, J. P., Oieroset,
M., Drake, J., Shay, M. A., Cassak, P. A., Nakamura, R., Zhou, M.,
Ashour-Abdalla, M., and André, M.: Magnetospheric Multiscale
observations of large-amplitude, parallel, electrostatic waves associated
with magnetic reconnection at the magnetopause, Geophys. Res. Lett., 43, 5626–5634, https://doi.org/10.1002/2016GL068992, 2016. a
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction – The Cluster
mission, Ann. Geophys., 19, 1197–1200,
https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Fargette, N., Lavraud, B., Øieroset, M., Phan, T. D.,
Toledo-Redondo, S., Kieokaew, R., Jacquey, C., Fuselier, S. A.,
Trattner, K. J., Petrinec, S., Hasegawa, H., Garnier, P.,
Génot, V., Lenouvel, Q., Fadanelli, S., Penou, E., Sauvaud,
J. A., Avanov, D. L. A., Burch, J., Chand ler, M. O., Coffey, V. N.,
Dorelli, J., Eastwood, J. P., Farrugia, C. J., Gershman, D. J.,
Giles, B. L., Grigorenko, E., Moore, T. E., Paterson, W. R.,
Pollock, C., Saito, Y., Schiff, C., and Smith, S. E.: On the
Ubiquity of Magnetic Reconnection Inside Flux Transfer Event-Like Structures
at the Earth's Magnetopause, Geophys. Res. Lett., 47, e86726,
https://doi.org/10.1029/2019GL086726, 2020. a
Grandin, M., Battarbee, M., Osmane, A., Ganse, U., Pfau-Kempf, Y.,
Turc, L., Brito, T., Koskela, T., Dubart, M., and Palmroth, M.:
Hybrid-Vlasov modelling of nightside auroral proton precipitation during
southward interplanetary magnetic field conditions, Ann. Geophys., 37,
791–806, https://doi.org/10.5194/angeo-37-791-2019, 2019. a
Grigorenko, E. E., Kronberg, E. A., Daly, P. W., Ganushkina, N. Y., Lavraud,
B., Sauvaud, J.-A., and Zelenyi, L. M.: Origin of low proton-to-electron
temperature ratio in the Earth's plasma sheet, J. Geophys. Res.-Space, 121, 9985–10,004, https://doi.org/10.1002/2016JA022874, 2016. a
Hada, T., Nishida, A., Teresawa, T., and Hones Jr., E. W.: Bi-directional
electron pitch angle anisotropy in the plasma sheet, J. Geophys. Res.-Space, 86, 11211–11224, https://doi.org/10.1029/JA086iA13p11211, 1981. a, b
Harris, E. G.: On a plasma sheath separating regions of oppositely directed
magnetic field, Il Nuovo Cimento, 23, 115–121, https://doi.org/10.1007/BF02733547,
1962. a
Hesse, M., Kuznetsova, M., Schindler, K., and Birn, J.: Three-dimensional
modeling of electron quasiviscous dissipation in guide-field magnetic
reconnection, Phys. Plasmas, 12, 100704, https://doi.org/10.1063/1.2114350, 2005. a, b
Hesse, M., Liu, Y. H., Chen, L. J., Bessho, N., Kuznetsova, M., Birn, J., and
Burch, J. L.: On the electron diffusion region in asymmetric reconnection
with a guide magnetic field, Geophys. Res. Lett., 43, 2359–2364,
https://doi.org/10.1002/2016GL068373, 2016. a, b
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh,
B. M., Hietala, H., von Alfthan, S., and Palmroth, M.: Reconnection
rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov
simulation results, J. Geophys. Res.-Space, 122,
2877–2888, https://doi.org/10.1002/2016JA023709, 2017. a
Hoilijoki, S., Ergun, R. E., Schwartz, S. J., Eriksson, S., Wilder,
F. D., Webster, J. M., Ahmadi, N., Le Contel, O., Burch, J. L.,
Torbert, R. B., Strangeway, R. J., and Giles, B. L.: Electron-Scale
Magnetic Structure Observed Adjacent to an Electron Diffusion Region at the
Dayside Magnetopause, J. Geophys. Res.-Space, 124,
10153–10169, https://doi.org/10.1029/2019JA027192, 2019a. a
Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L.,
Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P.,
Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., and
Palmroth, M.: Properties of Magnetic Reconnection and FTEs on the Dayside
Magnetopause With and Without Positive IMF Bx Component During Southward
IMF, J. Geophys. Res.-Space, 124, 4037–4048,
https://doi.org/10.1029/2019JA026821, 2019b. a
Hoshino, M., Hiraide, K., and Mukai, T.: Strong electron heating and
non-Maxwellian behavior in magnetic reconnection, Earth Planets Space,
53, 627–634, https://doi.org/10.1186/BF03353282, 2001. a, b
Huang, S. Y., Jiang, K., Yuan, Z. G., Sahraoui, F., He, L. H.,
Zhou, M., Fu, H. S., Deng, X. H., He, J. S., Cao, D., Yu, X. D.,
Wang, D. D., Burch, J. L., Pollock, C. J., and Torbert, R. B.:
Observations of the Electron Jet Generated by Secondary Reconnection in the
Terrestrial Magnetotail, Astrophys. J., 862, 144,
https://doi.org/10.3847/1538-4357/aacd4c, 2018. a
Huang, Z., Tóth, G., van der Holst, B., Chen, Y., and Gombosi, T.: A
six-moment multi-fluid plasma model, J. Comput. Phys., 387,
134–153, https://doi.org/10.1016/j.jcp.2019.02.023, 2019. a
Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facsko,
G., and Pulkkinen, T.: The GUMICS-4 global MHD magnetosphere-ionosphere
coupling simulation, J. Atmos. Sol.-Terr. Phy.,
80, 48–59, https://doi.org/10.1016/j.jastp.2012.03.006, 2012. a
Juusola, L., Hoilijoki, S., Pfau-Kempf, Y., Ganse, U., Jarvinen, R.,
Battarbee, M., Kilpua, E., Turc, L., and Palmroth, M.: Fast plasma
sheet flows and X line motion in the Earth's magnetotail: results from a
global hybrid-Vlasov simulation, Ann. Geophys., 36, 1183–1199,
https://doi.org/10.5194/angeo-36-1183-2018, 2018a. a
Juusola, L., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Brito, T.,
Grandin, M., Turc, L., and Palmroth, M.: A possible source mechanism
for magnetotail current sheet flapping, Ann. Geophys., 36, 1027–1035,
https://doi.org/10.5194/angeo-36-1027-2018, 2018b. a
Karimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J.,
Daughton, W., Dimmock, A., Nykyri, K., Wan, M., Sibeck, D., Tatineni, M.,
Majumdar, A., Loring, B., and Geveci, B.: The link between shocks,
turbulence, and magnetic reconnection in collisionless plasmas, Phys. Plasmas, 21, 062308, https://doi.org/10.1063/1.4882875, 2014. a
Kempf, Y., Pokhotelov, D., Von Alfthan, S., Vaivads, A., Palmroth, M., and
Koskinen, H. E. J.: Wave dispersion in the hybrid-Vlasov model: Verification
of Vlasiator, Phys. Plasmas, 20, 1–9, https://doi.org/10.1063/1.4835315, 2013. a
Khotyaintsev, Y. V., Cully, C. M., Vaivads, A., André, M., and Owen, C. J.:
Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons, Phys. Rev.
Lett., 106, 165001, https://doi.org/10.1103/PhysRevLett.106.165001,
2011. a
Kilian, P., Muñoz, P. A., Schreiner, C., and Spanier, F.: Plasma waves as a
benchmark problem, J. Plasma Phys., 83, 707830101, https://doi.org/10.1017/S0022377817000149, 2017. a
Lapenta, G., Markidis, S., Marocchino, A., and Kaniadakis, G.: Relaxation of
Relativistic Plasmas Under the Effect of Wave-Particle Interactions, Astrophys. J., 666, 949–954, https://doi.org/10.1086/520326, 2007. a
Lapenta, G., Markidis, S., Divin, A., Goldman, M., and Newman, D.: Scales of
guide field reconnection at the hydrogen mass ratio, Phys. Plasmas, 17,
082106, https://doi.org/10.1063/1.3467503,
2010. a
Lapenta, G., Markidis, S., Goldman, M. V., and Newman, D. L.: Secondary
reconnection sites in reconnection-generated flux ropes and reconnection
fronts, Nat. Phys., 11, 690–695, https://doi.org/10.1038/nphys340, 2015. a
Li, W. Y., Graham, D. B., Khotyaintsev, Y. V., Vaivads, A., André, M., Min,
K., Liu, K., Tang, B. B., Wang, C., Fujimoto, K., Norgren, C.,
Toledo-Redondo, S., Lindqvist, P.-A., Ergun, R. E., Torbert, R. B., Rager,
A. C., Dorelli, J. C., Gershman, D. J., Giles, B. L., Lavraud, B., Plaschke,
F., Magnes, W., Contel, O. L., Russell, C. T., and Burch, J. L.: Electron
Bernstein waves driven by electron crescents near the electron diffusion
region, Nat. Commun, 11, 1–10, https://doi.org/10.1038/s41467-019-13920-w, 2020. a
Lin, Y. and Wang, X. Y.: Three-dimensional global hybrid simulation of dayside
dynamics associated with the quasi-parallel bow shock, J. Geophys. Res., 110, A12216, https://doi.org/10.1029/2005JA011243, 2005. a
Lin, Z. and Chen, L.: A fluid–kinetic hybrid electron model for
electromagnetic simulations, Phys. Plasmas, 8, 1447–1450,
https://doi.org/10.1063/1.1356438, 2001. a
Liu, Y.-H. H., Daughton, W., Karimabadi, H., Li, H., and Roytershteyn, V.:
Bifurcated Structure of the Electron Diffusion Region in
Three-Dimensional Magnetic Reconnection, Phys. Rev. Lett.,
110, 265004, https://doi.org/10.1103/PhysRevLett.110.265004, 2013. a
Londrillo, P. and Del Zanna, L.: On the divergence-free condition in
Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained
transport method, J. Comput. Phys., 195, 17–48,
https://doi.org/10.1016/j.jcp.2003.09.016, 2004. a, b
Lu, S., Lin, Y., Angelopoulos, V., Artemyev, A. V., Pritchett, P. L., Lu, Q.,
and Wang, X. Y.: Hall effect control of magnetotail dawn-dusk asymmetry: A
three-dimensional global hybrid simulation, J. Geophys. Res.-Space, 121, 11882–11895, https://doi.org/10.1002/2016JA023325,
2016. a
Lu, S., Artemyev, A. V., Angelopoulos, V., Lin, Y., Zhang, X.-J., Liu, J.,
Avanov, L. A., Giles, B. L., Russell, C. T., and Strangeway, R. J.: The Hall
Electric Field in Earth's Magnetotail Thin Current Sheet, J. Geophys. Res.-Space, 124, 1052–1062,
https://doi.org/10.1029/2018JA026202, 2019. a
Mozer, F. S., Agapitov, O. V., Artemyev, A., Drake, J. F., Krasnoselskikh, V.,
Lejosne, S., and Vasko, I.: Time domain structures: What and where they are,
what they do, and how they are made, Geophys. Res. Lett., 42,
3627–3638, https://doi.org/10.1002/2015GL063946, 2015. a
Nakamura, R., Baumjohann, W., Fujimoto, M., Asano, Y., Runov, A., Owen, C. J.,
Fazakerley, A. N., Klecker, B., Rème, H., Lucek, E. A., Andre, M., and
Khotyaintsev, Y.: Cluster observations of an ion-scale current sheet in the
magnetotail under the presence of a guide field, J. Geophys. Res.-Space, 113, A07S16, https://doi.org/10.1029/2007JA012760,
2008. a
Ni, B., Thorne, R. M., Zhang, X., Bortnik, J., Pu, Z., Xie, L., Hu, Z.-j., Han,
D., Shi, R., Zhou, C., and Gu, X.: Origins of the Earth's Diffuse Auroral
Precipitation, Space Sci. Rev., 200, 205–259,
https://doi.org/10.1007/s11214-016-0234-7, 2016. a
Nunn, D.: Vlasov Hybrid Simulation – An Efficient and Stable Algorithm for the
Numerical Simulation of Collision‐Free Plasma, Transport Theor. Stat., 34, 151–171, https://doi.org/10.1080/00411450500255518, 2005. a
Omidi, N., Phan, T., and Sibeck, D. G.: Hybrid simulations of magnetic
reconnection initiated in the magnetosheath, J. Geophys. Res.-Space, 114, A02222, https://doi.org/10.1029/2008JA013647,
2009. a
Onsager, T. G., Thomsen, M. F., Elphic, R. C., and Gosling, J. T.: Model of
electron and ion distributions in the plasma sheet boundary layer, J. Geophys. Res. Space, 96, 20999–21011,
https://doi.org/10.1029/91JA01983, 1991. a, b, c
Onsager, T. G., Thomsen, M. F., Elphic, R. C., Gosling, J. T., Anderson, R. R.,
and Kettmann, G.: Electron generation of electrostatic waves in the plasma
sheet boundary layer, J. Geophys. Res.-Space, 98,
15509–15519, https://doi.org/10.1029/93JA00921, 1993. a
Palmroth, M.: Vlasiator, available at: http://www.physics.helsinki.fi/vlasiator/, last access: 25 January 2021. a
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation
code, Github repository, https://doi.org/10.5281/zenodo.3640593, version 4.0 and the
eVlasiator branch, 2020. a
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T., Hietala, H.,
Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail
reconnection in the global magnetospheric context: Vlasiator first results,
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, 2017. a
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T.,
Grandin, M., Hoilijoki, S., Sandroos, A., and von Alfthan, S.: Vlasov methods
in space physics and astrophysics, Living Reviews in Computational
Astrophysics, 4, 1, https://doi.org/10.1007/s41115-018-0003-2, 2018. a, b, c, d, e, f, g, h
Paterson, W. R. and Frank, L. A.: Survey of plasma parameters in Earth's
distant magnetotail with the Geotail spacecraft, Geophys. Res. Lett., 21, 2971–2974, https://doi.org/10.1029/94GL02105,
1994. a
Pezzi, O., Cozzani, G., Califano, F., Valentini, F., Guarrasi, M., Camporeale,
E., Brunetti, G., Retinò, A., and Veltri, P.: ViDA: a Vlasov–DArwin solver
for plasma physics at electron scales, J. Plasma Phys., 85,
905850506, https://doi.org/10.1017/S0022377819000631, 2019. a
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B.
U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L.,
Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C.,
Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y.,
Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles,
B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T.,
Lindqvist, P. A., and Magnes, W.: Electron magnetic reconnection without ion
coupling in Earth's turbulent magnetosheath, Nature, 557, 202–206,
https://doi.org/10.1038/s41586-018-0091-5, 2018. a
Pritchett, P.: Particle-in-cell simulations of magnetosphere electrodynamics,
IEEE T. Plasma Sci., 28, 1976–1990, https://doi.org/10.1109/27.902226, 2000. a
Ricci, P., Lapenta, G., and Brackbill, J. U.: GEM reconnection challenge:
Implicit kinetic simulations with the physical mass ratio, Geophys. Res. Lett., 29, 3–1–3–4, https://doi.org/10.1029/2002GL015314, 2002. a
Runov, A., Angelopoulos, V., Gabrielse, C., Liu, J., Turner, D. L., and Zhou,
X.-Z.: Average thermodynamic and spectral properties of plasma in and around
dipolarizing flux bundles, J. Geophys. Res.-Space,
120, 4369–4383, https://doi.org/10.1002/2015JA021166, 2015. a
Sandroos, A.: VLSV: file format and tools, Github repository,
available at: https://github.com/fmihpc/vlsv/ (last access: 30 November 2020), 2019. a
Schmitz, H. and Grauer, R.: Kinetic Vlasov simulations of collisionless
magnetic reconnection, Phys. Plasmas, 13, 092309,
https://doi.org/10.1063/1.2347101, 2006. a
Sibeck, D. G., Omidi, N., Dandouras, I., and Lucek, E.: On the edge of the
foreshock: model-data comparisons, Ann. Geophys., 26, 1539–1544,
https://doi.org/10.5194/angeo-26-1539-2008, 2008. a
Swisdak, M.: Quantifying gyrotropy in magnetic reconnection, Geophys. Res. Lett., 43, 43–49, https://doi.org/10.1002/2015GL066980, 2016. a, b
Tronci, C. and Camporeale, E.: Neutral Vlasov kinetic theory of magnetized
plasmas, Phys. Plasmas, 22, 020704, https://doi.org/10.1063/1.4907665, 2015. a
Tóth, G., Jia, X., Markidis, S., Peng, I. B., Chen, Y., Daldorff, L. K. S.,
Tenishev, V. M., Borovikov, D., Haiducek, J. D., Gombosi, T. I., Glocer, A.,
and Dorelli, J. C.: Extended magnetohydrodynamics with embedded
particle-in-cell simulation of Ganymede's magnetosphere, J. Geophys. Res.-Space, 121, 1273–1293,
https://doi.org/10.1002/2015JA021997, 2016. a
Tóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., and Peng, I. B.:
Scaling the Ion Inertial Length and Its Implications for Modeling
Reconnection in Global Simulations, J. Geophys. Res.-Space, 122, 10336–10355, https://doi.org/10.1002/2017JA024189, 2017. a
Umeda, T., Togano, K., and Ogino, T.: Two-dimensional full-electromagnetic
Vlasov code with conservative scheme and its application to magnetic
reconnection, Comput. Phys. Commun., 180, 365–374,
https://doi.org/10.1016/j.cpc.2008.11.001,
2009. a
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I.,
Sandroos, A., and Palmroth, M.: Vlasiator: First global hybrid-Vlasov
simulations of Earth's foreshock and magnetosheath, J. Atmos. Sol.-Terr. Phy., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a, b
Wang, C.-P., Gkioulidou, M., Lyons, L. R., and Angelopoulos, V.:
Spatial distributions of the ion to electron temperature ratio in the
magnetosheath and plasma sheet, J. Geophys. Res.-Space, 117, A08215, https://doi.org/10.1029/2012JA017658, 2012. a, b
Wang, J., Huang, C., Ge, Y. S., Du, A., and Feng, X.: Influence of the IMF Bx
on the geometry of the bow shock and magnetopause, Planet. Space Sci., 182, 104844, https://doi.org/10.1016/j.pss.2020.104844,
2020. a
Wang, L., Hakim, A. H., Bhattacharjee, A., and Germaschewski, K.: Comparison of
multi-fluid moment models with particle-in-cell simulations of collisionless
magnetic reconnection, Phys. Plasmas, 22, 012108,
https://doi.org/10.1063/1.4906063, 2015. a
Wilson, F., Neukirch, T., Hesse, M., Harrison, M. G., and Stark, C. R.:
Particle-in-cell simulations of collisionless magnetic reconnection with a
non-uniform guide field, Phys. Plasmas, 23, 032302,
https://doi.org/10.1063/1.4942939, 2016. a
Yamamoto, T. and Tamao, T.: Adiabatic plasma convection in the tail plasma
sheet, Planet. Space Sci., 26, 1185–1191,
https://doi.org/10.1016/0032-0633(78)90058-2, 1978. a
Zerroukat, M. and Allen, T.: A three-dimensional monotone and conservative
semi-Lagrangian scheme (SLICE-3D) for transport problems, Q. J. Roy. Meteorol. Soc., 138, 1640–1651,
https://doi.org/10.1002/qj.1902, 2012.
a
Zhang, X., Angelopoulos, V., Artemyev, A. V., and Liu, J.: Whistler and
Electron Firehose Instability Control of Electron Distributions in and Around
Dipolarizing Flux Bundles, Geophys. Res. Lett., 45, 9380–9389,
https://doi.org/10.1029/2018GL079613, 2018. a
Zhou, H., Tóth, G., Jia, X., Chen, Y., and Markidis, S.: Embedded Kinetic
Simulation of Ganymede's Magnetosphere: Improvements and
Inferences, J. Geophys. Res.-Space, 124,
5441–5460, https://doi.org/10.1029/2019JA026643, 2019. a
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
We investigate local acceleration dynamics of electrons with a new numerical simulation method,...