Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-769-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-769-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system
Physics Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
Vojto Rušin
Astronomical Institute, Slovak Academy of Sciences, 059 60
Tatranská Lomnica, Slovakia
Emil A. Prikryl
Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
Pavel Šťastný
Climatological Service Department, Slovak Hydrometeorological Institute, 833 15 Bratislava, Slovakia
Maroš Turňa
Climatological Service Department, Slovak Hydrometeorological Institute, 833 15 Bratislava, Slovakia
Martina Zeleňáková
Department of Environmental Engineering, Technical University of Košice, 040 00 Košice, Slovakia
Related authors
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Ján Feranec, Juraj Holec, Pavel Šťastný, Daniel Szatmári, and Monika Kopecká
Adv. Cartogr. GIScience Int. Cartogr. Assoc., 1, 6, https://doi.org/10.5194/ica-adv-1-6-2019, https://doi.org/10.5194/ica-adv-1-6-2019, 2019
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Tropospheric dynamics
Determination of tropical belt widening using multiple GNSS radio occultation measurements
Mohamed Darrag, Shuanggen Jin, Andrés Calabia, and Aalaa Samy
Ann. Geophys., 40, 359–377, https://doi.org/10.5194/angeo-40-359-2022, https://doi.org/10.5194/angeo-40-359-2022, 2022
Short summary
Short summary
We investigated the possible widening of the tropical belt along with the probable drivers and impacts based on high-accuracy, high-resolution GNSS RO data (2001–2020). The results show that the tropical belt has significant expansion in the Northern Hemisphere, while the Southern Hemisphere has no significant expansion.
Cited articles
Azañón, J. M., Azor, A., Yesares, J., Tsige, M., Mateos, R. M.,
Nieto, F., Delgado, J., López-Chicano, M., Martín, W., and
Rodríguez-Fernández, J.: Regional-scale high-plasticity
clay-bearing formation as controlling factor on landslides in Southeast
Spain, Geomorphology, 120, 26–37, https://doi.org/10.1016/j.geomorph.2009.09.012, 2010.
Ballesteros-Cánovas, J. A., Czajka, B., Janecka, K., Lempa, M., Kaczka,
R. J., and Stoffel, M.: Flash floods in the Tatra Mountain streams: Frequency
and triggers, Sci. Total Environ., 511, 639–648,
https://doi.org/10.1016/j.scitotenv.2014.12.081, 2015.
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the
interplanetary medium, J. Geophys. Res., 76, 3534–3563, 1971.
Bennetts, D. A. and Hoskins, B. J.: Conditional symmetric instability – A
possible explanation for frontal rainbands, Q. J. Roy. Meteor. Soc.,
105, 945–962, https://doi.org/10.1002/qj.49710544615, 1979.
Bluestein, H. B.: Synoptic-Dynamic Meteorology in Midlatitudes, Vol. II. Observations and Theory of Weather systems, Oxford University
Press, pp. 594, 1993.
Bluestein, H. B. and Jain, M. H.: The formation of mesoscale lines of
precipitation: Severe squall lines in Oklahoma during the spring, J. Atmos.
Sci., 42, 1711–1732, 1985.
Borga, M., Anagnostou, E. N., Bloschl, G., and Creutin, J.-D.: Flash flood
forecasting, warning and risk management: the HYDRATE project, Environ. Sci. Pol., 14, 834–844, 2011.
Borovsky, J. E. and Steinberg, J. T.: The “calm before the storm” in
CIR/magnetosphere interactions: Occurrence statistics, solar wind
statistics, and magnetospheric preconditioning, J. Geophys. Res., 111,
A07S10, https://doi.org/10.1029/2005JA011397, 2006.
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R.: Magnetic loop behind
an interplanetary shock: Voyager, Helios, and IMP 8 observations, J.
Geophys. Res., 86, 6673–6684, https://doi.org/10.1029/JA086iA08p06673, 1981.
Burns, G. B., Tinsley, B. A., Frank-Kamenetsky, A. V., and Bering, E. A.:
Interplanetary magnetic field and atmospheric electric circuit influences on
ground-level pressure at Vostok, J. Geophys. Res., 112, D04103, https://doi.org/10.1029/2006JD007246, 2007.
Burns, G. B., Tinsley, B. A., French, W. J. R., Troshichev, O. A., and
Frank-Kamenetsky, A. V.: Atmospheric circuit influences on ground-level
pressure in the Antarctic and Arctic, J. Geophys. Res., 113, D15112, https://doi.org/10.1029/2007JD009618, 2008.
Callaghan, J. and Power, S. B.: Major coastal flooding in southeastern
Australia 1860–2012, associated deaths and weather systems, Aust. Met.
Ocean. J., 64, 183–213, 2014.
Callaghan, J. and Power, S. B.: A vertical wind structure that leads
to extreme rainfall and major flooding in southeast Australia, Journal of
Southern Hemisphere Earth Systems Science, 66, 380–401, https://doi.org/10.22499/3.6604.002, 2016.
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A.,
Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman, T. K., Dyson, P.
L., Greenwald, R. A., Kikuchi, T., Pinnock, M., Rash, J. P. S., Sato, N.,
Sofko, G. J., Villain, J. P., and Walker, A. D. M.: A decade of the Super
Dual Auroral Radar Network (SuperDARN): Scientific achievements, new
techniques and future directions, Surv. Geophys., 28, 33–109, 2007.
Cowling, D. H., Webb, H. D., and Yeh, K. C.: Group rays of internal gravity
waves in a wind stratified atmosphere, J. Geophys. Res., 79, 213–220, 1971.
de Toma, G.: Evolution of Coronal Holes and Implications for High-Speed
Solar Wind During the Minimum Between Cycles 23 and 24, Solar Phys., 274,
195–217, https://doi.org/10.1007/s11207-010-9677-2, 2011.
Dorotovič, I., Minarovjech, M., Lorenc, M., and Rybanský, M.: Modified
Homogeneous Data Set of Coronal Intensities [data set], available at: https://www.suh.sk/online-data/modifikovany-homogenny-rad/category/35-denn-hodnoty-mhr (last access: 11 August 2021), 2014.
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys.
Rev. Lett. 6, 47–48, 1961.
Dungey, J. W.: Origin of the concept of reconnection and its application to
the magnetopause: A historical view, Physics of the Magnetopause, edited by: Song, P., Sonnerup, B. U. O., and Thomsen, M. F.,
AGU, Washington, D.C., Geophys.
Monogr. Ser., 90, 17–19, 1995.
Eltayeb, I. A. and McKenzie, J. F.: Critical-level behaviour and wave
amplification of a gravity wave incident upon a shear layer, J. Fluid Mech., 72, 661–671, https://doi.org/10.1017/S0022112075003217, 1975.
Emanuel, K. A.: Atmospheric Convection, Oxford University Press, 580 pp., 1994.
Esposito, G., Matano, F., and Scepi, G.: Analysis of Increasing Flash Flood
Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic
Area, Italy, Front. Earth Sci., 6, 63, https://doi.org/10.3389/feart.2018.00063, 2018.
Feren, G.: The “striated delta” cloud system – a satellite imagery
precursor to major cyclogenesis in the eastern Australian – western Tasman
Sea region, Weather Forecast, 10, 286–309, 1995.
FloodList: funded by Copernicus, Reporting floods and flooding news since 2008 [data set], availabe at: http://floodlist.com/, last access: 18 August 2021.
Fritsch, J. M. and Carbone, R. E.: Improving quantitative precipitation
forecasts in the warm season: A USWRP research and development strategy,
B. Am. Meteor. Soc., 85, 955–965, 2004.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D., Viglione, A.: A compilation of data on European flash
floods [data set], J. Hydrol., 367, 70–78, 2009.
Gjerloev, J. W.: The SuperMAG data processing technique, J. Geophys. Res.,
117, A09213, https://doi.org/10.1029/2012JA017683, 2012.
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G.,
Tsurutani, B. T., and Vasyliunas, V. M.: What is a Geomagnetic Storm?, J.
Geophys. Res., 99, 5771–5792, 1994.
Gourley, J. J., Erlingis, J. M., Hong, Y., and Wells, E. B.: Evaluation of
Tools Used for Monitoring and Forecasting Flash Floods in the United States,
Weather Forecast., 27, 158–173, https://doi.org/10.1175/WAF-D-10-05043.1, 2012.
Groisman, P. Y., Knight, R. W., Easterling, D. R., Karl, T. R., Hegerl, G. C.,
and Razuvaev, V. N.: Trends in intense precipitation in the climate record,
J. Climate, 18, 1326–1350, 2005.
Gutowski, W., Hegerl, G., Holland, G., Knutson, T., Mearns, L., Stouffer, R., Webster, P. J., Wehner, M. F., Zwiers, F. W.: Causes of observed changes in extremes and projections of future
changes, in: Weather and Climate Extremes in a Changing
Climate, Regions of Focus: North America, Hawaii, edited by: Karl, T. R., Meehl, G. A., Miller, C. D., Hassol, S. J., Waple,
A. M., and Murray, W. L., Caribbean and US Pacific
Islands, U.S. Climate Change Science Program and the Subcommittee on Global
Change Research, Washington, DC., 2008.
Hagiwara, M. and Tanaka, H. L.: A theoretical analysis of the atmospheric
gravity wave that connects the thermosphere and the troposphere, Tsukuba
Geoenvironm. Sci., 16, 1–14, 2020.
Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and
traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940,
1996.
Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H.: The structure of the
heliospheric current sheet: 1978–1982, J. Geophys. Res., 88, 9910–9918,
1983.
Houze, R. A.: Mesoscale convective systems, Rev. Geophys., 42,
RG4003, https://doi.org/10.1029/2004RG000150, 2004.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., and Adler, R. F.: TRMM (TMPA)
Precipitation L3 1 day 0.25 degree x 0.25 degree V, edited by: Savtchenko, A.,
Goddard Earth Sciences Data and Information Services Center (GES
DISC) [data set], available at: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary (last access: 11 August 2021), 2016.
Jones, W. L.: Reflexion and stability of waves in stable stratified fluids
with shear flow: numerical study, J. Fluid Mech., 34, 609–624,
1968.
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data [data set], 110, A02104, doi:10.1029/2004JA010649, 2005.
Krieger, A. S.,Timothy, A. F., and Roelof, E. C.: A coronal hole and its
identification as the source of a high velocity solar wind stream, Solar
Phys., 29, 505–525, 1973.
Kuo, Y.-H. and Low-Nam, S.: Prediction of nine explosive cyclones over the
western Atlantic Ocean with a regional model, Mon. Weather Rev., 18, 3–25,
1990.
Lam, M. M., Chisham, G., and Freeman, M. P.: The interplanetary magnetic field
influences mid-latitude surface atmospheric pressure, Environ. Res. Lett. 8,
045001, https://doi.org/10.1088/1748-9326/8/4/045001, 2013.
Lam, M. M., Chisham, G., and Freeman, M. P.: Solar wind-driven geopotential
height anomalies originate in the Antarctic lower troposphere, Geophys. Res.
Lett., 41, 6509–6514, https://doi.org/10.1002/2014GL061421, 2014.
Lam, M. M. and Tinsley, B. A.: Solar wind-atmospheric electricity-cloud
microphysics connections to weather and climate, J. Atmos. Sol.-Terr.
Phys., 149, 277–290, https://doi.org/10.1016/j.jastp.2015.10.019, 2016.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of
wave phenomena in a dissipative multiconstituent medium 1. Transfer function
of the Earth's thermosphere, J. Geophys. Res., 89, 10929–10959, 1984a.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of
wave phenomena in a dissipative multiconstituent medium 2. Impulsive
perturbations in the Earth's thermosphere, J. Geophys. Res., 89,
10961–10986, 1984b.
Mayr, H. G., Harris, I., Herrero, F. A., Spencer, N. W., Varosi, F., and
Pesnell, W. D.: Thermospheric gravity waves: Observations and interpretation
using the transfer function model, Space Sci. Rev., 54, 297–375, 1990.
Mayr, H. G., Talaat, E. R., and Wolven, B. C.: Global propagation of gravity
waves generated with the whole atmosphere transfer function model, J. Atmos.
Sol.-Terr. Phys., 104, 7–17, 2013.
McKenzie, J. F.: Reflection and amplification of acoustic-gravity waves at a
density and velocity discontinuity, J. Geophys. Res., 77, 2915–2926, 1972.
National Academies of Sciences, Engineering, and Medicine: Framing the
Challenge of Urban Flooding in the United States, Washington, DC: The
National Academies Press, https://doi.org/10.17226/25381, 2019.
Owens, M. J., Scott, C. J., Lockwood, M., Barnard, L., Harrison, R. G., Nicoll,
K., Watt, C., and Bennett A. J.: Modulation of UK lightning by heliospheric
magnetic field polarity, Environ. Res. Lett., 9, 115009, https://doi.org/10.1088/1748-9326/9/11/115009, 2014.
Pekárová, P., Škoda, P., Majerčáková, O., and
Miklánek, P.: Important floods of the past on the territory of Slovakia
[in Slovak], Acta Hydrol. Slov., 12, 65–73, 2011.
Phillips, J. L., Balogh, A., Bame, S. J., Goldstein, B. E., Gosling, J. T.,
Hoeksema, J. T., McComas, D. J., Neugebauer, M., Sheeley Jr., N. R., and Wang,
Y.-M.: Ulysses at 50∘ south: constant immersion in the high-speed
solar wind, Geophys. Res. Lett., 21, 1105-1108, https://doi.org/10.1029/94GL01065, 1994.
Phillips, J. L., Bame, S. J., Feldman, W. C., Gosling, J. T., Hammond, C.
M., McComas, D. J., Goldstein, B. E., Neugebauer, M., Scime, E. E., and
Suess, S. T.: Ulysses solar wind plasma observations at high southerly
latitudes, Science, 268, 1030–1033, https://doi.org/10.1126/science.268.5213.1030, 1995.
Prikryl, P., Rušin, V., and Rybanský, M.: The influence of solar
wind on extratropical cyclones – Part 1: Wilcox effect revisited, Ann.
Geophys., 27, 1–30, https://doi.org/10.5194/angeo-27-1-2009, 2009a.
Prikryl, P., Muldrew, D. B., and Sofko, G. J.: The influence of solar wind on
extratropical cyclones – Part 2: A link mediated by auroral atmospheric
gravity waves?, Ann. Geophys., 27, 31–57, https://doi.org/10.5194/angeo-27-31-2009,
2009b.
Prikryl, P., Jayachandran, P. T., Mushini, S. C., and Richardson, I. G.: Toward
the probabilistic forecasting of high-latitude GPS phase scintillation,
Space Weather, 10, S08005, https://doi.org/10.1029/2012SW000800, 2012.
Prikryl, P., Iwao, K., Muldrew, D.B., Rušin, V., Rybanský, M., and
Bruntz, R.: A link between high-speed solar wind streams and explosive
extratropical cyclones, J. Atmos. Sol.-Terr. Phys., 149, 219–231,
https://doi.org/10.1016/j.jastp.2016.04.002, 2016.
Prikryl, P. Bruntz, R., Tsukijihara, T., Iwao, K., Muldrew, D. B., Rušin,
V., Rybanský, M., Turňa, M., and Šťastný, P.:
Tropospheric weather influenced by solar wind through atmospheric vertical
coupling downward control, J. Atmos. Sol.-Terr. Phys., 171, 94–110,
https://doi.org/10.1016/j.jastp.2017.07.023, 2018.
Prikryl, P., Nikitina, L., and Rušin, V.: Rapid intensification of
tropical cyclones in the context of the solar
wind-magnetosphere-ionosphere-atmosphere coupling, J. Atmos. Sol.-Terr.
Phys., 183, 36–60, https://doi.org/10.1016/j.jastp.2018.12.009,
2019.
Rušin, V., Prikryl, P., and Prikryl, E. A.: White-light corona structure
observed by naked eye and processed images, Monthly Notices of the Royal
Astronomical Society, 495, 2170–2178, https://doi.org/10.1093/mnras/staa1377, 2020.
Rybanský, M.: Coronal index of solar activity, Bull. Astron. Inst.
Czechoslov., 28, 367–370, 1975.
Rybanský, M., Rušin, V., and Minarovijech, M.: Coronal index of
solar activity, Space Sci. Rev., 95, 227–234, 2001.
Rybanský, M., Rušin, V., Minarovjech, M., Klocok, L., and Cliver,
E. W.: Reexamination of the coronal index of solar activity, J. Geophys. Res., 110, A08106,
https://doi.org/10.1029/2005JA011146, 2005.
Richardson, I. G.: The formation of CIRs at stream-stream interfaces and
resultant geomagnetic activity, AGU Monograph, 167, 45–58, https://doi.org/10.1029/GM167, 2006.
Schroeder, A. J., Gourley, J. J., Hardy, J., Henderson, J. J., Parhi, P.,
Rahmani, V., Reed, K. A., Schumacher, R. S., Smith, B. K., and Taraldsen, M. J.:
The development of a flash flood severity index, J. Hydrol., 541, 523–532, https://doi.org/10.1016/j.jhydrol.2016.04.005, 2016.
Schultz, D. M. and Schumacher, P. N.: The use and misuse of conditional
symmetric instability, Mon. Weather Rev., 127, 2709–2732, 1999.
Schumacher, R. S.: Heavy Rainfall and Flash Flooding, Oxford Research
Encyclopedia, Natural Hazard Science (oxfordre.com/naturalhazardscience),
Oxford University Press USA, https://doi.org/10.1093/acrefore/9780199389407.013.132,
2019.
Scott, C. J., Harrison, R. G., Owens, M. J., Lockwood, M., and Barnard, L.:
Evidence for solar wind modulation of lightning, Environ. Res.
Lett., 9, 055004, https://doi.org/10.1088/1748-9326/9/5/055004, 2014.
Slovak Hydrometeorological Institute (SHMU): Annual flood reports [data set], available at: https://www.shmu.sk/sk/?page=128, last access: 18 August 2021.
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and
corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res.
Lett., 3, 137, https://doi.org/10.1029/GL003i003p00137, 1976.
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the
interplanetary sector structure up to heliographic latitudes of
16∘: Pioneer 11, J. Geophys. Res., 83, 717–724, 1978.
Svalgaard, L.: On the use of Godhavn H component as an indicator of the
interplanetary sector polarity, J. Geophys. Res., 80, 2717–2722, https://doi.org/10.1029/JA080i019p02717, 1975.
Šamaj, F., Valovič, Š., and Brázdil, R.: Daily precipitation
totals with extraordinary abundance in the CSSR in the period 1901–1980,
Slovak: Denné úhrny zrážok s mimoriadnou výdatnosťou
v ČSSR v období 1901–1980, Zborník prác SHMÚ 24.
Alfa. Bratislava, 9–113, 1985.
Tinsley, B. A.: Influence of solar wind on the global electric circuit, and
inferred effects on cloud microphysics, temperature, and the dynamics in the
troposphere, Space Sci. Rev., 94, 231–258, 2000.
Tinsley, B. A.: The global atmospheric electric circuit and its effects on
cloud microphysics, Reports on Progress in Physics 71, 066801, https://doi.org/10.1088/0034-4885/71/6/066801, 2008.
Tinsley, B. A.: A working hypothesis for connections between electrically
induced changes in cloud microphysics and storm vorticity, with possible
effects on circulation, Adv. Space Res., 50, 791–805, 2012.
Tsugawa, T., Kotake, N., Otsuka, Y., and Saito, A.: Medium-scale traveling
ionospheric disturbances observed by GPS receiver network in Japan: a short
review, GPS Solut., 11, 139–144, https://doi.org/10.1007/s10291-006-0045-5, 2007.
Tsurutani, B. T., Smith, E. J., Pyle, K. R., and Simpson, J. A.: Energetic
protons accelerated at corotating shocks: Pioneer 10 and 11 observations
from 1 to 6 AU, J. Geophys. Res., 87, 7389–7404, https://doi.org/10.1029/JA087iA09p07389, 1982.
Tsurutani, B. T. and Gonzalez, W. D.: The cause of High-Intensity,
Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén
wave trains, Planet. Space Sci., 35, 405–412, https://doi.org/10.1016/0032-0633(87)90097-3, 1987.
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., and Smith, E.
J.: Origin of interplanetary southward magnetic fields responsible for
major magnetic storms near solar maximum (1978–1979), J. Geophys. Res.,
93, 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988.
Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., and Sugiura, M.:
Interplanetary Alfvén waves and auroral (substorm) activity: IMP-8, J.
Geophys. Res., 95, 2241–2252, https://doi.org/10.1029/JA095iA03p02241, 1990.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and
Okada, M: Interplanetary origin of geomagnetic activity in the declining
phase of the solar cycle, J. Geophys. Res., 100, 21717–21733, https://doi.org/10.1029/95JA01476, 1995.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., and Vasyliunas, V.: Corotating solar wind streams and recurrent
geomagnetic activity: A review, J. Geophys. Res., 111, A07S01,
https://doi.org/10.1029/2005JA011273, 2006a.
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Gopalswamy, N.,
and Guarnieri, F. L.: Magnetic Storms Caused by Corotating Solar Wind Streams,
in Recurrent Magnetic Storms: Corotating Solar Wind, AGU Monograph, 167,
1–17, https://doi.org/10.1029/GM167, 2006b.
Tsurutani, B. T., Echer, E., and Gonzalez, W. D.: The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields, Ann. Geophys., 29, 839–849, https://doi.org/10.5194/angeo-29-839-2011, 2011.
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E., Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS) impingement onto
the magnetosphere as a cause of relativistic electron dropouts (REDs) via
coherent EMIC wave scattering with possible consequences for climate change
mechanisms, J. Geophys. Res., 121, 10130–10156,
https://doi.org/10.1002/2016JA022499, 2016.
Veretenenko, S. and Thejll, P.: Effects of energetic solar proton events on
the cyclone development in the North Atlantic, J. Atmos.
Sol.-Terr. Phys., 66, 393–405, 2004.
Villarini, G., Krajewski, W. F., Ntelekos, A. A., Georgakakos, K. P., and Smith,
J. A.: Towards probabilistic forecasting of flash floods: The combined
effects of uncertainty in radar-rainfall and flash flood guidance, J. Hydrol., 394, 275–284, 2010.
Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O., and Olson, R. H.:
Solar magnetic sector structure: Relation to circulation of the earth's
atmosphere, Science, 180, 185–186, 1973.
Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O., Olson, R. H., and
Jenne, R. L.: Influence of solar magnetic sector structure on terrestrial
atmospheric vorticity, J. Atmos. Sci., 31, 581–588,
1974.
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Climate change is affecting the stability of the atmosphere and increasing the occurrence of...