Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-599-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-599-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Andrei Runov
CORRESPONDING AUTHOR
Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA, USA
Maxime Grandin
Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Heli Hietala
The Blackett Laboratory, Imperial College, London, UK
Department of Physics and Astronomy, University of Turku, Turku, Finland
Sanni Hoilijoki
Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO, USA
Emilia Kilpua
Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Department of Physics, University of Helsinki, Helsinki, Finland
Sergio Toledo-Redondo
Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Lucile Turc
Department of Physics, University of Helsinki, Helsinki, Finland
Drew Turner
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
Related authors
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
Nat. Hazards Earth Syst. Sci., 24, 3925–3943, https://doi.org/10.5194/nhess-24-3925-2024, https://doi.org/10.5194/nhess-24-3925-2024, 2024
Short summary
Short summary
The World Wide Lightning Location Network (WWLLN) operates a globally distributed network of stations that detect lightning signals at a planetary scale. A detection efficiency of 29 % with a location accuracy of between 2 and 3 km is obtained for the area of Spain by comparing WWLLN data with those of the Spanish State Meteorological Agency. The network's capability to resolve convective-storm cells generated in a cutoff low-pressure system is also demonstrated in the west Mediterranean Sea.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956, https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind - the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174, https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and experienced technological disruptions during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Ferdinand Plaschke, Maria Jernej, Heli Hietala, and Laura Vuorinen
Ann. Geophys., 38, 287–296, https://doi.org/10.5194/angeo-38-287-2020, https://doi.org/10.5194/angeo-38-287-2020, 2020
Short summary
Short summary
Jets of solar-wind plasma commonly hit the Earth's magnetosphere. Using data from the four Magnetospheric Multiscale (MMS) spacecraft, we show statistically that within jets the magnetic field is more aligned with the plasma flow direction than outside of these jets. Our study confirms prior simulation results, but it also shows that the average effect is moderate. The jets' magnetic field is important with respect to their impact on space weather.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Laura Vuorinen, Heli Hietala, and Ferdinand Plaschke
Ann. Geophys., 37, 689–697, https://doi.org/10.5194/angeo-37-689-2019, https://doi.org/10.5194/angeo-37-689-2019, 2019
Short summary
Short summary
Before the solar wind encounters the Earth's magnetic field, it is first slowed down and deflected by the Earth's bow shock. We find that downstream of the bow shock regions where the shock normal and the solar wind magnetic field are almost parallel and the shock is more rippled, plasma jets with high earthward velocities are observed significantly more often than elsewhere downstream of the shock. Our results help us forecast the occurrence of these jets and their effects on Earth.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Matti M. Ala-Lahti, Emilia K. J. Kilpua, Andrew P. Dimmock, Adnane Osmane, Tuija Pulkkinen, and Jan Souček
Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, https://doi.org/10.5194/angeo-36-793-2018, 2018
Short summary
Short summary
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME) to deepen our understanding of these geo-effective plasma environments. The results imply that mirror modes are common structures in ICME sheaths and occur almost exclusively as dip-like structures and in mirror stable stable plasma.
Ferdinand Plaschke and Heli Hietala
Ann. Geophys., 36, 695–703, https://doi.org/10.5194/angeo-36-695-2018, https://doi.org/10.5194/angeo-36-695-2018, 2018
Short summary
Short summary
Fast jets of solar wind particles drive through a slower environment in the magnetosheath, located sunward of the region dominated by the Earth’s magnetic field. THEMIS multi-spacecraft observations show that jets push ambient particles out of their way. These particles flow around the faster jets into the jets’ wake. Thereby, jets stir the magnetosheath, changing the properties of this key region whose particles and magnetic fields can directly interact with the Earth’s magnetic field.
Tomas Karlsson, Ferdinand Plaschke, Heli Hietala, Martin Archer, Xóchitl Blanco-Cano, Primož Kajdič, Per-Arne Lindqvist, Göran Marklund, and Daniel J. Gershman
Ann. Geophys., 36, 655–677, https://doi.org/10.5194/angeo-36-655-2018, https://doi.org/10.5194/angeo-36-655-2018, 2018
Short summary
Short summary
We have studied fast plasma jets outside of Earth’s magnetic environment. Such jets are small-scale structures with a limited lifetime, which may be important in determining the properties of the near-Earth space environment, due to their concentrated kinetic energy. We have used data from the NASA Magnetospheric MultiScale (MMS) satellites to study their properties in detail, to understand how these jets are formed. We have found evidence that there are at least two different types of jets.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Erika Palmerio, Emilia K. J. Kilpua, and Neel P. Savani
Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, https://doi.org/10.5194/angeo-34-313-2016, 2016
Short summary
Short summary
Coronal Mass Ejections (CMEs) are giant clouds of plasma and magnetic field that erupt from the Sun and travel though the solar wind. They can cause interplanetary shocks in the vicinity of Earth. We show in our paper that the region that follows CME-driven shocks, known as sheath region, can obtain a planar configuration of the magnetic field lines (planar magnetic structure, PMS) due to the compression resulting from the shock itself or from the draping of the magnetic field ahead of the CME.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, D. Fontaine, and L. Turc
Ann. Geophys., 31, 1559–1567, https://doi.org/10.5194/angeo-31-1559-2013, https://doi.org/10.5194/angeo-31-1559-2013, 2013
E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez
Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, https://doi.org/10.5194/angeo-31-1251-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
K. Andreeova, E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, A. Isavnin, and R. Vainio
Ann. Geophys., 31, 555–562, https://doi.org/10.5194/angeo-31-555-2013, https://doi.org/10.5194/angeo-31-555-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetotail
Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail
Quasi-separatrix layers induced by ballooning instability in the near-Earth magnetotail
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
Turbulent processes in the Earth's magnetotail: spectral and statistical research
A possible source mechanism for magnetotail current sheet flapping
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
James H. Lane, Adrian Grocott, Nathan A. Case, and Maria-Theresia Walach
Ann. Geophys., 39, 1037–1053, https://doi.org/10.5194/angeo-39-1037-2021, https://doi.org/10.5194/angeo-39-1037-2021, 2021
Short summary
Short summary
The Sun's magnetic field is carried across space by the solar wind – a hot plasma
streamof ions and electrons – forming the interplanetary magnetic field (IMF). The IMF can introduce asymmetries in the Earth's magnetic field, giving plasma flowing within it a direction dependent on IMF orientation. Electric currents in near-Earth space can also influence these plasma flows. We investigate these two competing mechanisms and find that the currents can prevent the IMF from controlling the flow.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Ping Zhu, Zechen Wang, Jun Chen, Xingting Yan, and Rui Liu
Ann. Geophys., 37, 325–335, https://doi.org/10.5194/angeo-37-325-2019, https://doi.org/10.5194/angeo-37-325-2019, 2019
Short summary
Short summary
Our research explores a new method for identifying where and when the magnetic field lines in Earth's magnetotail may change its topology through the reconnection process, during which a sudden release of magnetic energy can lead to the brightening of aurora, a process called substorm. Traditionally, the magnetic reconnection was often interpreted using a two-dimensional model, which however does not capture the intrinsically three-dimensional nature of reconnection physics, as we have revealed.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Liudmyla V. Kozak, Bohdan A. Petrenko, Anthony T. Y. Lui, Elena A. Kronberg, Elena E. Grigorenko, and Andrew S. Prokhorenkov
Ann. Geophys., 36, 1303–1318, https://doi.org/10.5194/angeo-36-1303-2018, https://doi.org/10.5194/angeo-36-1303-2018, 2018
Short summary
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
Cited articles
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Angelopoulos, V.: The ARTEMIS Mission, Space Sci. Rev., 165, 3–25,
https://doi.org/10.1007/s11214-010-9687-2, 2011. a
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B.,
Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.-H., Auster, U., Donovan,
E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Xhou, X., and Kepko,
L.: Tail reconnection triggering substorm onset, Science, 321, 931–935,
https://doi.org/10.1126/science.1160495, 2008a. a
Angelopoulos, V., Sibeck, D., Carlson, C. W., McFadden, J. P., Larson, D.,
Lin, R. P., Bonnell, J. W., Mozer, F. S., Ergun, R., Cully, C., Glassmeier,
K. H., Auster, U., Roux, A., LeContel, O., Frey, S., Phan, T., Mende, S.,
Frey, H., Donovan, E., Russell, C. T., Strangeway, R., Liu, J., Mann, I.,
Rae, J., Raeder, J., Li, X., Liu, W., Singer, H. J., Sergeev, V. A.,
Apatenkov, S., Parks, G., Fillingim, M., and Sigwarth, J.: First Results from
the THEMIS mission, Space Sci. Rev., 141, 453–476,
https://doi.org/10.1007/s11214-008-9378-4, 2008b. a
Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li,
S.-S., and Shinohara, I.: Electromagnetic Energy Conversion at Reconnection
Fronts, Science, 341, 1478–1482, https://doi.org/10.1126/science.1236992, 2013. a, b
Arzner, K. and Scholer, M.: Kinetic structure of the post plasmoid plasma sheet
during magnetotail reconnection, J. Geophys. Res., 106, 3827–3844,
https://doi.org/10.1029/2000JA000179, 2001. a
Ashour-Abdalla, M., Frank, L. A., Paterson, W. R., Peroomian, V., and Zelenyi,
L. M.: Proton velocity distributions in the magnetotail: Theory and
observations, J. Geophys. Res., 101, 2587–2598, https://doi.org/10.1029/95JA02539,
1996. a
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka,
K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141,
235–264, https://doi.org/10.1007/s11214-008-9365-9, 2008. a
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and
McPherron, R. L.: Neutral line model of substorms: Past results and present
view, J. Geophys. Res., 101, 12975–13010, https://doi.org/10.1029/95JA03753, 1996. a
Battarbee, M. and the Vlasiator team: Analysator: python analysis toolkit, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4462515, 2020.
Birn, J. and Runov, A.: Ion Velocity Distributions in Dipolarization Events:
Distributions in the Central Plasma Sheet, J. Geophys. Res., 122, 8014–8025,
https://doi.org/10.1002/2017JA024230, 2016. a, b, c, d
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M., and Zelenyi,
L. M.: Particle Acceleration in the Magnetotail and Aurora, Space Sci. Rev.,
173, 49–102, https://doi.org/10.1007/s11214-012-9874-4, 2012. a
Bonnell, J. W., Mozer, F. S., Delory, G. T., Hull, A. J., Ergun, R. E., Cully,
C. M., Angelopoulos, V., and Harvey, P. R.: The Electric Field Instrument
(EFI) for THEMIS, Space Sci. Rev., 141, 303–341,
https://doi.org/10.1007/s11214-008-9469-2, 2008. a
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya,
J., Markidis, S., and Brackbill, J. U.: Two-way coupling of a global
Hall magnetohydrodynamics model with a local implicit particle-in-cell
model, J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Delcourt, D. C., Sauvaud, J. A., and Moore, T. E.: Phase bunching during
substorm dipolarization, J. Geophys. Res., 102, 24313–24324,
https://doi.org/10.1029/97JA02039, 1997. a
Drake, J. F., Swisdak, M., Phan, T. D., Cassak, P. A., Shay, M. A.,
Lepri, S. T., Lin, R. P., Quataert, E., and Zurbuchen, T. H.: Ion
heating resulting from pickup in magnetic reconnection exhausts, J.
Geophys. Res.-Space, 114, A05111,
https://doi.org/10.1029/2008JA013701, 2009. a
Eastwood, J. P., Goldman, M. V., Hietala, H., Newman, D. L., Mistry, R., and
Lapenta, G.: On reflection and acceleration near magnetotail dipolarization
fronts associated with magnetic reconnection, J. Geophys. Res., 120,
511–525, https://doi.org/10.1002/2014JA020516, 2015. a
Grandin, M., Aikio, A. T., and Kozlovsky, A.: Properties and
Geoeffectiveness of Solar Wind High-Speed Streams and Stream Interaction
Regions During Solar Cycles 23 and 24, J. Geophys. Res.- Space, 124, 3871–3892, https://doi.org/10.1029/2018JA026396,
2019a. a
Grandin, M., Battarbee, M., Osmane, A., Ganse, U., Pfau-Kempf, Y.,
Turc, L., Brito, T., Koskela, T., Dubart, M., and Palmroth, M.:
Hybrid-Vlasov modelling of nightside auroral proton precipitation during
southward interplanetary magnetic field conditions, Ann. Geophys., 37,
791–806, https://doi.org/10.5194/angeo-37-791-2019, 2019b. a, b
Hesse, M., Winske, D., and Birn, J.: On the ion-scale structure of thin
current sheets in the magnetotail, Phys. Scripta, 74, 63–66,
https://doi.org/10.1088/0031-8949/1998/T74/012, 1998. a
Hietala, H., Drake, J. F., Phan, T. D., Eastwood, J. P., and McFadden, J. P.:
Ion temperature anisotropy across a magnetotail reconnection jet, Geophys.
Res. Lett., 42, 7239–7247, https://doi.org/10.1002/2015GL065168, 2015. a, b, c, d
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh,
B. M., Hietala, H., von Alfthan, S., and Palmroth, M.: Reconnection
rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov
simulation results, J. Geophys. Res.-Space, 122,
2877–2888, https://doi.org/10.1002/2016JA023709, 2017. a
Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L.,
Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P.,
Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., and
Palmroth, M.: Properties of Magnetic Reconnection and FTEs on the Dayside
Magnetopause With and Without Positive IMF Bx Component During Southward
IMF, J. Geophys. Res.-Space, 124, 4037–4048,
https://doi.org/10.1029/2019JA026821, 2019. a
Hoshino, M., T.Mukai, Yamamoto, T., and Kokubun, S.: Ion dynamics in magnetic
reconnection: Comparison between numerical simulation and Geotail
observations, J. Geophys. Res., 103, 4509–4530, https://doi.org/10.1029/97JA01785,
1998. a
Juusola, L., Hoilijoki, S., Pfau-Kempf, Y., Ganse, U., Jarvinen, R.,
Battarbee, M., Kilpua, E., Turc, L., and Palmroth, M.: Fast plasma
sheet flows and X line motion in the Earth's magnetotail: results from a
global hybrid-Vlasov simulation, Ann. Geophys., 36, 1183–1199,
https://doi.org/10.5194/angeo-36-1183-2018, 2018a. a, b
Juusola, L., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Brito, T.,
Grandin, M., Turc, L., and Palmroth, M.: A possible source mechanism
for magnetotail current sheet flapping, Ann. Geophys., 36, 1027–1035,
https://doi.org/10.5194/angeo-36-1027-2018, 2018b. a
Krauss-Varban, D. and Omidi, N.: Large-scale hybrid simulations of the
magnetotail during reconnection, Geophys. Res. Lett., 22, 3271–3274,
https://doi.org/10.1029/95GL03414, 1995. a
Li, S. S., Liu, J., Angelopoulos, V., Runov, A., and Kiehas, S. A.:
Anti-Dipolarization Fronts Observed by ARTEMIS, J. Geophys. Res., 119,
7181–7198, https://doi.org/10.1002/2014JA020062, 2014. a, b
Lin, Y. and Swift, D. W.: A two-dimensional hybrid simulation of the
magnetotail reconnection layer, J. Geophys. Res, 101, 19859–19870,
https://doi.org/10.1029/96JA01457, 1996. a
Lin, Y., Wang, X. Y., Lu, S., Perez, J. D., and Lu, Q.:
Investigation of storm time magnetotail and ion injection using
three-dimensional global hybrid simulation, J. Geophys. Res.-Space, 119, 7413–7432, https://doi.org/10.1002/2014JA020005, 2014. a, b
Liu, J., Angelopoulos, V., Runov, A., and Zhou, X.-Z.: On the current sheets
surrounding dipolarizing flux bundles in the magnetotail: the case for
wedgelets, J. Geophys. Res., 118, 2000–2020, https://doi.org/10.1002/jgra.50092, 2013. a
Lottermoser, R. F., Scholer, M., and Matthews, A. P.: Ion kinetic
effects in magnetic reconnection: Hybrid simulations, J. Geophys. Res., 103,
4547–4560, https://doi.org/10.1029/97JA01872, 1998. a
Lu, S., Artemyev, A. V., Angelopoulos, V., Lin, Y., Zhang, X. J.,
Liu, J., Avanov, L. A., Giles, B. L., Russell, C. T., and
Strangeway, R. J.: The Hall Electric Field in Earth's Magnetotail Thin
Current Sheet, J. Geophys. Res.-Space, 124,
1052–1062, https://doi.org/10.1029/2018JA026202, 2019. a
McFadden, J. P., Carlson, C. W., Larson, D., Angelopolos, V., Ludlam, M.,
Abiad, R., and Elliot, B.: The THEMIS ESA Plasma Instrument and In-flight
Calibration, Space Sci. Rev., 141, 277–302, https://doi.org/10.1007/s11214-008-9440-2,
2008. a
Nagai, T., Fujimoto, M., Saito, Y., Machida, S., Terasawa, T., Nakamura, R.,
Yamamoto, T., Mukai, T., Nishida, A., and Kokubun, S.: Structure and dynamics
of magnetic reconnection for substorm onsets with Geotail observations, J.
Geophys. Res., 103, 4419–4440, https://doi.org/10.1029/97JA02190, 1998. a
Nagai, T., Nakamura, M. F. R., Baumjohann, W., Ieda, W., Shinohara, A.,
Machida, S., Saito, Y., and Mukai, T.: Solar wind control of the radial
distance of the magnetic reconnection site in the magnetotail, J. Geophys.
Res., 110, A09208, https://doi.org/10.1029/2005JA011207, 2005. a
Nagai, T., Shinohara, I., Zenitani, S., Nakamura, R., Nakamura, T. K. M.,
Fujimoto, M., Saito, Y., and Mukai, T.: Three-dimensional structure of
magnetic reconnection in the magnetotail from Geotail observations, J.
Geophys. Res., 118, 1667–1678, https://doi.org/10.1002/jgra.50247, 2013. a
Nagai, T., Shinohara, I., and Zenitani, S.: Ion acceleration processes
in magnetic reconnection: Geotail observations in the magnetotail, J. Geophys. Res.-Space, 120, 1766–1783,
https://doi.org/10.1002/2014JA020737, 2015. a
Nakamura, M. S., Fujimoto, M., and Maezawa, K.: Ion dynamics and
resultant velocity space distributions in the course of magnetotail
reconnection, J. Geophys. Res., 103, 4531–4546,
https://doi.org/10.1029/97JA01843, 1998. a, b
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Reme, H.,
Bosqued, J. M., Dandouras, I., Sauvaud, J.-A., Glassmeier, K.-H., Kistler,
L., Mouikis, C., Zhang, T. L., Eichelberger, H., and Runov, A.: Motion of the
dipolarization front during a flow burst event observed by Cluster,
Geophys. Res. Lett., 29, 1942, https://doi.org/10.1029/2002GL015763, 2002. a
Oka, M., Phan, T.-D., Eastwood, J. P., Angelopoulos, V., Murphy, N. A.,
Oieroset, M., Miyashita, Y., Fujimoto, M., McFadden, J., and Larson, D.:
Magnetic Reconnection X-Line Retreat Associated with Dipolarization of the
Earth's Magnetosphere, Geophys. Res. Lett., 38, L20105,
https://doi.org/10.1029/2011GL049350, 2011. a
Palmroth, M.: Vlasiator, available at: http://www.physics.helsinki.fi/vlasiator/, last access: 28 June 2021.
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation code, Github repository [Dataset], https://doi.org/10.5281/zenodo.3640593, version 5.0, 2020.
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T., Hietala, H.,
Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail
reconnection in the global magnetospheric context: Vlasiator first results,
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, 2017. a, b, c
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T.,
Grandin, M., Hoilijoki, S., Sandroos, A., and von Alfthan, S.: Vlasov methods
in space physics and astrophysics, Living Reviews in Computational
Astrophysics, 4, 1, https://doi.org/10.1007/s41115-018-0003-2, 2018. a, b
Petrukovich, A. A., Sergeev, V. A., Zelenyi, L. M., Mukai, T.,
Yamamoto, T., Kokubun, S., Shiokawa, K., Deehr, C. S., Budnick,
E. Y., Büchner, J., Fedorov, A. O., Grigorieva, V. P., Hughes,
T. J., Pissarenko, N. F., Romanov, S. A., and Sandahl, I.: Two
spacecraft observations of a reconnection pulse during an auroral breakup,
J. Geophys. Res., 103, 47–60, https://doi.org/10.1029/97JA02296, 1998. a
Pritchett, P. L. and Runov, A.: The interaction of finite-width reconnection
exhaust jets with a dipolar magnetic field configuration, J. Geophys. Res.,
122, 3183–3200, https://doi.org/10.1002/2016JA023784, 2017. a, b
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J.,
McFadden, J. P., Larson, D., Glassmeier, K.-H., and Auster, U.: THEMIS
observations of an earthward-propagating dipolarization front, Geophys. Res.
Lett., 36, L14106, https://doi.org/10.1029/2009GL038980, 2009. a
Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Li, S., Plaschke, F.,
and Bonnell, J.: A THEMIS multicase study of dipolarization fronts in the
magnetotail plasma sheet, J. Geophys. Res., 116, A05216,
https://doi.org/10.1029/2010JA016316, 2011. a
Runov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.-Z., and Turner, D.:
Multi-point observations of dipolarization front formation by magnetotail
reconnection, J. Geophys. Res., 117, A05230, https://doi.org/10.1029/2011JA017361,
2012.
a
Runov, A., Angelopoulos, V., Artemyev, A., Lu, S., and Zhou, X.-Z.: Near-Earth
Reconnection Ejecta at Lunar Distances, J. Geophys. Res.-Space, 123, 2736–2744, https://doi.org/10.1002/2017JA025079, 2018. a, b
Sandroos, A.: VLSV: file format and tools, Github repository, available at: https://github.com/fmihpc/vlsv/ (last access: 28 June 2021), 2019.
Scholer, M. and Lottermoser, R. F.: On the kinetic structure of the
magnetotail reconnection layer, Geophys. Res. Lett, 25, 3281–3284,
https://doi.org/10.1029/98GL52510, 1998. a
Slavin, J. A., Owen, C. J., Kuznetsova, M. M., and Hesse, M.: ISEE 3
observations of plasmoids with flux rope magnetic topologies, Geophys. Res.
Lett., 22, 2061–2064, https://doi.org/10.1029/95GL01977, 1995. a
Speiser, T. W.: Particle Trajectories in Model Current Sheets, 1, Analytical
Solutions, J. Geophys. Res., 70, 4219–4226, https://doi.org/10.1029/JZ070i017p04219,
1965. a, b, c, d
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I.,
Sandroos, A., and Palmroth, M.: Vlasiator: First global hybrid-Vlasov
simulations of Earth's foreshock and magnetosheath, J. Atmos.
Sol.-Terr. Phys., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a
Zhou, X.-Z., Angelopoulos, V., Sergeev, V. A., and Runov, A.: Accelerated ions
ahead of Earthward-propagating dipolarization fronts, J. Geophys. Res., 115,
A00I03, https://doi.org/10.1029/2010JA015481, 2010. a, b
Zhou, X.-Z., Angelopoulos, V., Runov, A., Liu, J., and Ge, Y. S.: Emergence of
the active magnetotail plasma sheet boundary from transient, localized ion
acceleration, J. Geophys. Res., 117, A10216, https://doi.org/10.1029/2012JA018171,
2012. a
Zhou, X.-Z., Pan, D.-X., Angelopoulos, V., Runov, A., Zong, Q.-G.,
and Pu, Z.-Y.: Understanding the ion distributions near the boundaries of
reconnection outflow region, J. Geophys. Res.-Space, 121, 9400–9410, https://doi.org/10.1002/2016JA022993, 2016. a
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
In collisionless systems like space plasma, particle velocity distributions contain fingerprints...