Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-599-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-599-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Andrei Runov
CORRESPONDING AUTHOR
Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA, USA
Maxime Grandin
Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Heli Hietala
The Blackett Laboratory, Imperial College, London, UK
Department of Physics and Astronomy, University of Turku, Turku, Finland
Sanni Hoilijoki
Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO, USA
Emilia Kilpua
Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Department of Physics, University of Helsinki, Helsinki, Finland
Sergio Toledo-Redondo
Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
Lucile Turc
Department of Physics, University of Helsinki, Helsinki, Finland
Drew Turner
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
Related authors
No articles found.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent E. Ledvina
Ann. Geophys., 43, 349–367, https://doi.org/10.5194/angeo-43-349-2025, https://doi.org/10.5194/angeo-43-349-2025, 2025
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to Strong Thermal Emission Velocity Enhancement (STEVE) with white-, pale-pink-, or mauve-coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys., 43, 217–240, https://doi.org/10.5194/angeo-43-217-2025, https://doi.org/10.5194/angeo-43-217-2025, 2025
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Anton Fetzer, Mikko Savola, Adnane Osmane, Vili-Arttu Ketola, Philipp Oleynik, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1279, https://doi.org/10.5194/egusphere-2025-1279, 2025
Short summary
Short summary
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Venla Koikkalainen, Emilia Kilpua, Simon Good, and Adnane Osmane
EGUsphere, https://doi.org/10.5194/egusphere-2025-106, https://doi.org/10.5194/egusphere-2025-106, 2025
Short summary
Short summary
We study time series of solar wind large-scale structures (magnetic clouds, sheaths, slow and fast streams). These have profound importance for causing disturbances in the heliospheric conditions and driving space weather on Earth. The used techniques include methods deriving from information theory to determine entropy and complexity. We find that all of these techniques show stochastic fluctuations, but magnetic clouds stand out due to their coherent magnetic field
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Emilia Kilpua, Simon Good, Juska Soljento, Domenico Trotta, Tia Bäcker, Julia Ruohotie, Jens Pomoell, Chaitanya Sishtla, and Rami Vainio
EGUsphere, https://doi.org/10.5194/egusphere-2024-3564, https://doi.org/10.5194/egusphere-2024-3564, 2025
Short summary
Short summary
Interplanetary shock waves are one of the major forms of heliospheric transient that can have a profound impact on solar wind plasma and magnetic field conditions and accelerate charged particles to high energies. This work performs an extensive statistical analysis to detail how some of the key solar wind turbulence parameters, critical for understanding particle acceleration, are modified at the interplanetary shocks waves.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
Nat. Hazards Earth Syst. Sci., 24, 3925–3943, https://doi.org/10.5194/nhess-24-3925-2024, https://doi.org/10.5194/nhess-24-3925-2024, 2024
Short summary
Short summary
The World Wide Lightning Location Network (WWLLN) operates a globally distributed network of stations that detect lightning signals at a planetary scale. A detection efficiency of 29 % with a location accuracy of between 2 and 3 km is obtained for the area of Spain by comparing WWLLN data with those of the Spanish State Meteorological Agency. The network's capability to resolve convective-storm cells generated in a cutoff low-pressure system is also demonstrated in the west Mediterranean Sea.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Cited articles
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Angelopoulos, V.: The ARTEMIS Mission, Space Sci. Rev., 165, 3–25,
https://doi.org/10.1007/s11214-010-9687-2, 2011. a
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende, S. B.,
Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.-H., Auster, U., Donovan,
E., Mann, I. R., Rae, I. J., Russell, C. T., Runov, A., Xhou, X., and Kepko,
L.: Tail reconnection triggering substorm onset, Science, 321, 931–935,
https://doi.org/10.1126/science.1160495, 2008a. a
Angelopoulos, V., Sibeck, D., Carlson, C. W., McFadden, J. P., Larson, D.,
Lin, R. P., Bonnell, J. W., Mozer, F. S., Ergun, R., Cully, C., Glassmeier,
K. H., Auster, U., Roux, A., LeContel, O., Frey, S., Phan, T., Mende, S.,
Frey, H., Donovan, E., Russell, C. T., Strangeway, R., Liu, J., Mann, I.,
Rae, J., Raeder, J., Li, X., Liu, W., Singer, H. J., Sergeev, V. A.,
Apatenkov, S., Parks, G., Fillingim, M., and Sigwarth, J.: First Results from
the THEMIS mission, Space Sci. Rev., 141, 453–476,
https://doi.org/10.1007/s11214-008-9378-4, 2008b. a
Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D. L., Kiehas, S. A., Li,
S.-S., and Shinohara, I.: Electromagnetic Energy Conversion at Reconnection
Fronts, Science, 341, 1478–1482, https://doi.org/10.1126/science.1236992, 2013. a, b
Arzner, K. and Scholer, M.: Kinetic structure of the post plasmoid plasma sheet
during magnetotail reconnection, J. Geophys. Res., 106, 3827–3844,
https://doi.org/10.1029/2000JA000179, 2001. a
Ashour-Abdalla, M., Frank, L. A., Paterson, W. R., Peroomian, V., and Zelenyi,
L. M.: Proton velocity distributions in the magnetotail: Theory and
observations, J. Geophys. Res., 101, 2587–2598, https://doi.org/10.1029/95JA02539,
1996. a
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka,
K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS Fluxgate Magnetometer, Space Sci. Rev., 141,
235–264, https://doi.org/10.1007/s11214-008-9365-9, 2008. a
Baker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., and
McPherron, R. L.: Neutral line model of substorms: Past results and present
view, J. Geophys. Res., 101, 12975–13010, https://doi.org/10.1029/95JA03753, 1996. a
Battarbee, M. and the Vlasiator team: Analysator: python analysis toolkit, Zenodo [Dataset], https://doi.org/10.5281/zenodo.4462515, 2020.
Birn, J. and Runov, A.: Ion Velocity Distributions in Dipolarization Events:
Distributions in the Central Plasma Sheet, J. Geophys. Res., 122, 8014–8025,
https://doi.org/10.1002/2017JA024230, 2016. a, b, c, d
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M., and Zelenyi,
L. M.: Particle Acceleration in the Magnetotail and Aurora, Space Sci. Rev.,
173, 49–102, https://doi.org/10.1007/s11214-012-9874-4, 2012. a
Bonnell, J. W., Mozer, F. S., Delory, G. T., Hull, A. J., Ergun, R. E., Cully,
C. M., Angelopoulos, V., and Harvey, P. R.: The Electric Field Instrument
(EFI) for THEMIS, Space Sci. Rev., 141, 303–341,
https://doi.org/10.1007/s11214-008-9469-2, 2008. a
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya,
J., Markidis, S., and Brackbill, J. U.: Two-way coupling of a global
Hall magnetohydrodynamics model with a local implicit particle-in-cell
model, J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Delcourt, D. C., Sauvaud, J. A., and Moore, T. E.: Phase bunching during
substorm dipolarization, J. Geophys. Res., 102, 24313–24324,
https://doi.org/10.1029/97JA02039, 1997. a
Drake, J. F., Swisdak, M., Phan, T. D., Cassak, P. A., Shay, M. A.,
Lepri, S. T., Lin, R. P., Quataert, E., and Zurbuchen, T. H.: Ion
heating resulting from pickup in magnetic reconnection exhausts, J.
Geophys. Res.-Space, 114, A05111,
https://doi.org/10.1029/2008JA013701, 2009. a
Eastwood, J. P., Goldman, M. V., Hietala, H., Newman, D. L., Mistry, R., and
Lapenta, G.: On reflection and acceleration near magnetotail dipolarization
fronts associated with magnetic reconnection, J. Geophys. Res., 120,
511–525, https://doi.org/10.1002/2014JA020516, 2015. a
Grandin, M., Aikio, A. T., and Kozlovsky, A.: Properties and
Geoeffectiveness of Solar Wind High-Speed Streams and Stream Interaction
Regions During Solar Cycles 23 and 24, J. Geophys. Res.- Space, 124, 3871–3892, https://doi.org/10.1029/2018JA026396,
2019a. a
Grandin, M., Battarbee, M., Osmane, A., Ganse, U., Pfau-Kempf, Y.,
Turc, L., Brito, T., Koskela, T., Dubart, M., and Palmroth, M.:
Hybrid-Vlasov modelling of nightside auroral proton precipitation during
southward interplanetary magnetic field conditions, Ann. Geophys., 37,
791–806, https://doi.org/10.5194/angeo-37-791-2019, 2019b. a, b
Hesse, M., Winske, D., and Birn, J.: On the ion-scale structure of thin
current sheets in the magnetotail, Phys. Scripta, 74, 63–66,
https://doi.org/10.1088/0031-8949/1998/T74/012, 1998. a
Hietala, H., Drake, J. F., Phan, T. D., Eastwood, J. P., and McFadden, J. P.:
Ion temperature anisotropy across a magnetotail reconnection jet, Geophys.
Res. Lett., 42, 7239–7247, https://doi.org/10.1002/2015GL065168, 2015. a, b, c, d
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh,
B. M., Hietala, H., von Alfthan, S., and Palmroth, M.: Reconnection
rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov
simulation results, J. Geophys. Res.-Space, 122,
2877–2888, https://doi.org/10.1002/2016JA023709, 2017. a
Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L.,
Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P.,
Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., and
Palmroth, M.: Properties of Magnetic Reconnection and FTEs on the Dayside
Magnetopause With and Without Positive IMF Bx Component During Southward
IMF, J. Geophys. Res.-Space, 124, 4037–4048,
https://doi.org/10.1029/2019JA026821, 2019. a
Hoshino, M., T.Mukai, Yamamoto, T., and Kokubun, S.: Ion dynamics in magnetic
reconnection: Comparison between numerical simulation and Geotail
observations, J. Geophys. Res., 103, 4509–4530, https://doi.org/10.1029/97JA01785,
1998. a
Juusola, L., Hoilijoki, S., Pfau-Kempf, Y., Ganse, U., Jarvinen, R.,
Battarbee, M., Kilpua, E., Turc, L., and Palmroth, M.: Fast plasma
sheet flows and X line motion in the Earth's magnetotail: results from a
global hybrid-Vlasov simulation, Ann. Geophys., 36, 1183–1199,
https://doi.org/10.5194/angeo-36-1183-2018, 2018a. a, b
Juusola, L., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Brito, T.,
Grandin, M., Turc, L., and Palmroth, M.: A possible source mechanism
for magnetotail current sheet flapping, Ann. Geophys., 36, 1027–1035,
https://doi.org/10.5194/angeo-36-1027-2018, 2018b. a
Krauss-Varban, D. and Omidi, N.: Large-scale hybrid simulations of the
magnetotail during reconnection, Geophys. Res. Lett., 22, 3271–3274,
https://doi.org/10.1029/95GL03414, 1995. a
Li, S. S., Liu, J., Angelopoulos, V., Runov, A., and Kiehas, S. A.:
Anti-Dipolarization Fronts Observed by ARTEMIS, J. Geophys. Res., 119,
7181–7198, https://doi.org/10.1002/2014JA020062, 2014. a, b
Lin, Y. and Swift, D. W.: A two-dimensional hybrid simulation of the
magnetotail reconnection layer, J. Geophys. Res, 101, 19859–19870,
https://doi.org/10.1029/96JA01457, 1996. a
Lin, Y., Wang, X. Y., Lu, S., Perez, J. D., and Lu, Q.:
Investigation of storm time magnetotail and ion injection using
three-dimensional global hybrid simulation, J. Geophys. Res.-Space, 119, 7413–7432, https://doi.org/10.1002/2014JA020005, 2014. a, b
Liu, J., Angelopoulos, V., Runov, A., and Zhou, X.-Z.: On the current sheets
surrounding dipolarizing flux bundles in the magnetotail: the case for
wedgelets, J. Geophys. Res., 118, 2000–2020, https://doi.org/10.1002/jgra.50092, 2013. a
Lottermoser, R. F., Scholer, M., and Matthews, A. P.: Ion kinetic
effects in magnetic reconnection: Hybrid simulations, J. Geophys. Res., 103,
4547–4560, https://doi.org/10.1029/97JA01872, 1998. a
Lu, S., Artemyev, A. V., Angelopoulos, V., Lin, Y., Zhang, X. J.,
Liu, J., Avanov, L. A., Giles, B. L., Russell, C. T., and
Strangeway, R. J.: The Hall Electric Field in Earth's Magnetotail Thin
Current Sheet, J. Geophys. Res.-Space, 124,
1052–1062, https://doi.org/10.1029/2018JA026202, 2019. a
McFadden, J. P., Carlson, C. W., Larson, D., Angelopolos, V., Ludlam, M.,
Abiad, R., and Elliot, B.: The THEMIS ESA Plasma Instrument and In-flight
Calibration, Space Sci. Rev., 141, 277–302, https://doi.org/10.1007/s11214-008-9440-2,
2008. a
Nagai, T., Fujimoto, M., Saito, Y., Machida, S., Terasawa, T., Nakamura, R.,
Yamamoto, T., Mukai, T., Nishida, A., and Kokubun, S.: Structure and dynamics
of magnetic reconnection for substorm onsets with Geotail observations, J.
Geophys. Res., 103, 4419–4440, https://doi.org/10.1029/97JA02190, 1998. a
Nagai, T., Nakamura, M. F. R., Baumjohann, W., Ieda, W., Shinohara, A.,
Machida, S., Saito, Y., and Mukai, T.: Solar wind control of the radial
distance of the magnetic reconnection site in the magnetotail, J. Geophys.
Res., 110, A09208, https://doi.org/10.1029/2005JA011207, 2005. a
Nagai, T., Shinohara, I., Zenitani, S., Nakamura, R., Nakamura, T. K. M.,
Fujimoto, M., Saito, Y., and Mukai, T.: Three-dimensional structure of
magnetic reconnection in the magnetotail from Geotail observations, J.
Geophys. Res., 118, 1667–1678, https://doi.org/10.1002/jgra.50247, 2013. a
Nagai, T., Shinohara, I., and Zenitani, S.: Ion acceleration processes
in magnetic reconnection: Geotail observations in the magnetotail, J. Geophys. Res.-Space, 120, 1766–1783,
https://doi.org/10.1002/2014JA020737, 2015. a
Nakamura, M. S., Fujimoto, M., and Maezawa, K.: Ion dynamics and
resultant velocity space distributions in the course of magnetotail
reconnection, J. Geophys. Res., 103, 4531–4546,
https://doi.org/10.1029/97JA01843, 1998. a, b
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Reme, H.,
Bosqued, J. M., Dandouras, I., Sauvaud, J.-A., Glassmeier, K.-H., Kistler,
L., Mouikis, C., Zhang, T. L., Eichelberger, H., and Runov, A.: Motion of the
dipolarization front during a flow burst event observed by Cluster,
Geophys. Res. Lett., 29, 1942, https://doi.org/10.1029/2002GL015763, 2002. a
Oka, M., Phan, T.-D., Eastwood, J. P., Angelopoulos, V., Murphy, N. A.,
Oieroset, M., Miyashita, Y., Fujimoto, M., McFadden, J., and Larson, D.:
Magnetic Reconnection X-Line Retreat Associated with Dipolarization of the
Earth's Magnetosphere, Geophys. Res. Lett., 38, L20105,
https://doi.org/10.1029/2011GL049350, 2011. a
Palmroth, M.: Vlasiator, available at: http://www.physics.helsinki.fi/vlasiator/, last access: 28 June 2021.
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation code, Github repository [Dataset], https://doi.org/10.5281/zenodo.3640593, version 5.0, 2020.
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T., Hietala, H.,
Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail
reconnection in the global magnetospheric context: Vlasiator first results,
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, 2017. a, b, c
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T.,
Grandin, M., Hoilijoki, S., Sandroos, A., and von Alfthan, S.: Vlasov methods
in space physics and astrophysics, Living Reviews in Computational
Astrophysics, 4, 1, https://doi.org/10.1007/s41115-018-0003-2, 2018. a, b
Petrukovich, A. A., Sergeev, V. A., Zelenyi, L. M., Mukai, T.,
Yamamoto, T., Kokubun, S., Shiokawa, K., Deehr, C. S., Budnick,
E. Y., Büchner, J., Fedorov, A. O., Grigorieva, V. P., Hughes,
T. J., Pissarenko, N. F., Romanov, S. A., and Sandahl, I.: Two
spacecraft observations of a reconnection pulse during an auroral breakup,
J. Geophys. Res., 103, 47–60, https://doi.org/10.1029/97JA02296, 1998. a
Pritchett, P. L. and Runov, A.: The interaction of finite-width reconnection
exhaust jets with a dipolar magnetic field configuration, J. Geophys. Res.,
122, 3183–3200, https://doi.org/10.1002/2016JA023784, 2017. a, b
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J.,
McFadden, J. P., Larson, D., Glassmeier, K.-H., and Auster, U.: THEMIS
observations of an earthward-propagating dipolarization front, Geophys. Res.
Lett., 36, L14106, https://doi.org/10.1029/2009GL038980, 2009. a
Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Li, S., Plaschke, F.,
and Bonnell, J.: A THEMIS multicase study of dipolarization fronts in the
magnetotail plasma sheet, J. Geophys. Res., 116, A05216,
https://doi.org/10.1029/2010JA016316, 2011. a
Runov, A., Angelopoulos, V., Gabrielse, C., Zhou, X.-Z., and Turner, D.:
Multi-point observations of dipolarization front formation by magnetotail
reconnection, J. Geophys. Res., 117, A05230, https://doi.org/10.1029/2011JA017361,
2012.
a
Runov, A., Angelopoulos, V., Artemyev, A., Lu, S., and Zhou, X.-Z.: Near-Earth
Reconnection Ejecta at Lunar Distances, J. Geophys. Res.-Space, 123, 2736–2744, https://doi.org/10.1002/2017JA025079, 2018. a, b
Sandroos, A.: VLSV: file format and tools, Github repository, available at: https://github.com/fmihpc/vlsv/ (last access: 28 June 2021), 2019.
Scholer, M. and Lottermoser, R. F.: On the kinetic structure of the
magnetotail reconnection layer, Geophys. Res. Lett, 25, 3281–3284,
https://doi.org/10.1029/98GL52510, 1998. a
Slavin, J. A., Owen, C. J., Kuznetsova, M. M., and Hesse, M.: ISEE 3
observations of plasmoids with flux rope magnetic topologies, Geophys. Res.
Lett., 22, 2061–2064, https://doi.org/10.1029/95GL01977, 1995. a
Speiser, T. W.: Particle Trajectories in Model Current Sheets, 1, Analytical
Solutions, J. Geophys. Res., 70, 4219–4226, https://doi.org/10.1029/JZ070i017p04219,
1965. a, b, c, d
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I.,
Sandroos, A., and Palmroth, M.: Vlasiator: First global hybrid-Vlasov
simulations of Earth's foreshock and magnetosheath, J. Atmos.
Sol.-Terr. Phys., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a
Zhou, X.-Z., Angelopoulos, V., Sergeev, V. A., and Runov, A.: Accelerated ions
ahead of Earthward-propagating dipolarization fronts, J. Geophys. Res., 115,
A00I03, https://doi.org/10.1029/2010JA015481, 2010. a, b
Zhou, X.-Z., Angelopoulos, V., Runov, A., Liu, J., and Ge, Y. S.: Emergence of
the active magnetotail plasma sheet boundary from transient, localized ion
acceleration, J. Geophys. Res., 117, A10216, https://doi.org/10.1029/2012JA018171,
2012. a
Zhou, X.-Z., Pan, D.-X., Angelopoulos, V., Runov, A., Zong, Q.-G.,
and Pu, Z.-Y.: Understanding the ion distributions near the boundaries of
reconnection outflow region, J. Geophys. Res.-Space, 121, 9400–9410, https://doi.org/10.1002/2016JA022993, 2016. a
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
In collisionless systems like space plasma, particle velocity distributions contain fingerprints...