Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-397-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-397-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric drag effects on modelled low Earth orbit (LEO) satellites during the July 2000 Bastille Day event in contrast to an interval of geomagnetically quiet conditions
Space, Atmospheric Physics and Radio Waves Propagation Laboratory, Anchor University, Lagos 100278, Nigeria
William Denig
Department of Sciences, St. Joseph's College of Maine, Standish, ME 04084, USA
Sandip K. Chakrabarti
Indian Centre for Space Physics, Kolkata 700084, India
Muyiwa P. Ajakaiye
Space, Atmospheric Physics and Radio Waves Propagation Laboratory, Anchor University, Lagos 100278, Nigeria
Johnson Fatokun
Space, Atmospheric Physics and Radio Waves Propagation Laboratory, Anchor University, Lagos 100278, Nigeria
Adeniyi W. Akanni
Space, Atmospheric Physics and Radio Waves Propagation Laboratory, Anchor University, Lagos 100278, Nigeria
Jean-Pierre Raulin
Centro de Rádio Astronomia e Astrofísica Mackenzie, Universidade Presbiteriana Mackenzie, São Paulo, Brazil
Emilia Correia
Centro de Rádio Astronomia e Astrofísica Mackenzie, Universidade Presbiteriana Mackenzie, São Paulo, Brazil
Instituto Nacional de Pesquisas Espaciais, INPE, São José dos Campos, São Paulo, Brazil
John E. Enoh
System Engineering and Integration Unit, Interorbital systems, Mojave, CA 93502-0662, USA
Paul I. Anekwe
Space, Atmospheric Physics and Radio Waves Propagation Laboratory, Anchor University, Lagos 100278, Nigeria
Related authors
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Olugbenga Ogunmodimu, Muyiwa P. Ajakaiye, Johnson O. Fatokun, Paul I. Anekwe, Omodara E. Obisesan, Olufemi E. Oyanameh, and Oluwaseun V. Fatoye
Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022, https://doi.org/10.5194/angeo-40-433-2022, 2022
Short summary
Short summary
We combined the observed diurnal VLF amplitude variation in the D region with standard measurements of the E and F regions to perform a diagnostic investigation of coupled geomagnetic storm effects in order to understand the observed storm-induced variations in VLF narrowband based on state and responses of the ionosphere. The dayside VLF amplitude showed a tendency for attenuation following geomagnetic storms, and the h’E and h’F variations confirmed strong storm response over the signal paths.
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Olugbenga Ogunmodimu, Muyiwa P. Ajakaiye, Johnson O. Fatokun, Paul I. Anekwe, Omodara E. Obisesan, Olufemi E. Oyanameh, and Oluwaseun V. Fatoye
Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022, https://doi.org/10.5194/angeo-40-433-2022, 2022
Short summary
Short summary
We combined the observed diurnal VLF amplitude variation in the D region with standard measurements of the E and F regions to perform a diagnostic investigation of coupled geomagnetic storm effects in order to understand the observed storm-induced variations in VLF narrowband based on state and responses of the ionosphere. The dayside VLF amplitude showed a tendency for attenuation following geomagnetic storms, and the h’E and h’F variations confirmed strong storm response over the signal paths.
Emilia Correia, Luis Tiago Medeiros Raunheitte, José Valentin Bageston, and Dino Enrico D'Amico
Ann. Geophys., 38, 385–394, https://doi.org/10.5194/angeo-38-385-2020, https://doi.org/10.5194/angeo-38-385-2020, 2020
Short summary
Short summary
Here the investigation of gravity wave (GW) properties in the low ionosphere using very low frequency (VLF) radio signals is presented. The VLF technique is a powerful tool to obtain the wave period and duration of GW events in the low ionosphere. It can be used independent of sky conditions, during daytime and year-round, which is an advantage in comparison with airglow all-sky imagers.
Emilia Correia, Luca Spogli, Lucilla Alfonsi, Claudio Cesaroni, Adriana M. Gulisano, Evan G. Thomas, Ray F. Hidalgo Ramirez, and Alexandre A. Rodel
Ann. Geophys., 35, 1113–1129, https://doi.org/10.5194/angeo-35-1113-2017, https://doi.org/10.5194/angeo-35-1113-2017, 2017
Short summary
Short summary
Ionospheric disturbances observed in Antarctica during a moderately strong geomagnetic storm caused by the impact of a coronal mass ejection from the Sun are presented here. The ionosphere behavior was analyzed using GNSS and ionosonde observations at middle and high latitudes. The results showed that the impact promptly affected the ionosphere from the Equator to the high latitudes, resulting in strong irregularities, particularly at middle and high latitudes, which can affect GPS users.
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Space weather effects
Drivers of rapid geomagnetic variations at high latitudes
The time derivative of the geomagnetic field has a short memory
Effects of solar flares on the ionosphere as shown by the dynamics of ionograms recorded in Europe and South Africa
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Veronika Barta, Gabriella Sátori, Kitti Alexandra Berényi, Árpád Kis, and Earle Williams
Ann. Geophys., 37, 747–761, https://doi.org/10.5194/angeo-37-747-2019, https://doi.org/10.5194/angeo-37-747-2019, 2019
Short summary
Short summary
The solar flare effects on ionosphere at midlatitudes and low latitudes were investigated with the systematic analysis of ionospheric parameters derived from ionograms (total radio fade-out, fmin, dfmin: deviation from the reference days). The duration of the total fade-out varied with the solar zenith angle. Furthermore, a solar-zenith-angle-dependent enhancement of the fmin and dfmin parameters was detected but the observed values also depended on the flare intensity.
Cited articles
Ambelu, T., Falayi, E. O., Elemo, E. O., and Oladosu, O.: Estimation of total solar irradiance from sunspot number, Lat. Am. J. Phys. Educ., 5, 741–745, available at: http://www.lajpe.org/dec11/LAJPE_576_Ambelu_Tebabal_prreprint_corr.pdf (last access: 25 March 2020), 2011. a
Ben-Yaacov, O., Edlerman, E., and Gurfil, P.: Analytical technique for satellite projected cross-sectional area calculation, Adv. Space Res., 56, 205–217, 2015. a
Bhatnagar, V. P., Germany, G. A., and Tan, A.: Satellite ballistic coefficients and the lower thermosphere, Geophys. Res. Lett., 32, L03109, https://doi.org/10.1029/2004GL021627, 2005. a
Bobrinsky, N. and Del Monte, L.: The Space Situational Awareness Program of the European Space Agency, Cosmic Res.+, 48, 392–398, https://doi.org/10.1134/S0010952510050035, 2010. a
Borovsky, J. E. and Denton, M. H.: Differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, https://doi.org/10.1029/2005JA011447, 2006. a
Boteler, D. H.: A 21st century view of the March 1989 magnetic
storm, Space Weather, 17, 1427–1441, https://doi.org/10.1029/2019SW002278, 2019. a
Bowman, B. R.: True Satellite Ballistic Coefficient Determination for HASDM, in: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, USA, 5–8 August 2002, Paper AIAA 2002-4887, available at: http://sol.spacenvironment.net/~JB2008/pubs/JB2006_AIAA_2002_4887.pdf (last access: 11 March 2020), 2002. a
Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y. Lin, C. S., and Burke, W. J.: New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices, in: AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii, 18–21 August 2008, Paper 6438, available at: http://sol.spacenvironment.net/~JB2008/pubs/AIAA_2008-6438_JB2008_Model.pdf (last access: 5 March 2020), 2008. a
Bruinsma, S., Thuillier, G., and Barlier, F.: The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties, J. Atmos. Terr. Phys., 65, 1053–1070, https://doi.org/10.1016/S1364-6826(03)00137-8, 2003. a
Clette, F., Svalgaard, L., Vaquero, J. M., and Cliver, E. W.: Revisiting the Sunspot Number: A 400-Year Perspective on the Solar Cycle, Space Sci. Rev., 186, 35–103, https://doi.org/10.1007/s11214-014-0074-2, 2014. a
Closs, R. L.: A possible explanation of the sudden commencement and initial phase of a magnetic storm in terms of induced ionospheric currents, J. Geophys. Res., 72, 3987–3993, https://doi.org/10.1029/JZ072i015p03987, 1967. a
Cooke, G. E.: Satellite drag coefficients, Planet. Space Sci., 13, 929–946, https://doi.org/10.1016/0032-0633(65)90150-9, 1965. a
Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785–801, https://doi.org/10.1029/JZ071i003p00785, 1966. a
Denig, W. F., Wilkinson, D. C., and Redmon, R. J.: Extreme Space Weather Events: A GOES Perspective, in: Extreme Events in Geospace – Origins, Predictability and Consequences, edited by: Buzulukova, N., Elsevier, USA, 283–347, https://doi.org/10.1016/B978-0-12-812700-1.00012-1, 2018. a, b
Eddy, J.: The Sun, the Earth, and Near-Earth Space: A Guide to the Sun-Earth System, US Government Printing Office, ISBN 978-0-16-08308-8, available at: https://lwstrt.gsfc.nasa.gov/images/pdf/john_eddy/SES_Book_Interactive.pdf (last access: 16 March 2020), 2009. a
Emmert, J. T.: Thermospheric mass density: A review, Adv. Space Res., 56, 773–824, https://doi.org/10.1016/j.asr.2015.05.038, 2015. a
Fujiwara, H., Miyoshi, Y., Jin, H., Shinagawa, H., Otsuka, Y., Saito, A., and Ishii, M.: Thermospheric temperature and density variations, Proc. IAU, 5, 310–319, https://doi.org/10.1017/S1743921309992857, 2009. a, b, c, d
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994. a
Gosling, J. T. and Pizzo, V.: Formation and Evolution of Co-rotating Interaction Regions and their Three Dimensional Structure, Space Sci. Rev., 89, 21–52, https://doi.org/10.1023/A:1005291711900, 1999. a
Gosling, J. T., Bame, S. J., McComas, D. J., and Phillips, J. L.: Coronal mass ejections and large geomagnetic storms, Geophys. Res. Lett., 17, 901–904, https://doi.org/10.1029/GL017i007p00901, 1990. a
Guarnieri, F. L., Tsurutani, B. T., Gonzalez, W. D., Echer, E., and Gonzalez, A. L. C.: ICME and CIR storms with particular emphasis on HILDCAA events, in: ILWS Workshop 2006, Goa, India, 19–20 February 2006, available at: https://cdaw.gsfc.nasa.gov/publications/ilws_goa2006/266_Guarnieri.pdf (last access: 20 March 2020), 2006. a
Jakhu, R. S.: Iridium-Cosmos collision and its implications for space operations, in: Yearbook on Space Policy 2008/2009, edited by: Schrogl, K.-U. et al., Springer, Wien, New York, 254–275, 2009. a
Kelso, T. S.: Analysis of the Iridium 33Cosmos 2251 Collision, AAS 09-368, available at: https://celestrak.com/publications/AAS/09-368/AAS-09-368.pdf (last access: 16 March 2020), 2009. a
Kepko, L., McPherron, R. L., Amm, O., Apatenkov, S., Baumjohann, W., Birn, J., Lester, M., Nakamura, R., Pulkkinen, T. I., and Sergeev, V.: Substorm Current Wedge Revisited, Space Sci. Rev., 190, 1–46 https://doi.org/10.1007/s11214-014-0124-9, 2015. a
King-Hele, D.: Satellite Orbits in an Atmosphere: Theory and Applications, Kluwer Academic
Publisher Group, the Netherlands, 1987. a
Knipp, D.: Understanding Space Weather and the Physics Behind It, Space Technology Series, American Geophysical Union, USA, 727 pp., ISBN 978-0-07-340890-3, 2011. a
Knowles, S., Picone, J., Thonnard, S., and Nicholas, A. C.: The Effect of Atmospheric Drag on Satellite Orbits During the Bastille Day
Event, Sol. Phys., 204, 387–397, https://doi.org/10.1023/A:1014223807360, 2001. a
Mayaud, P. N.: Derivation, Meaning, and Use of Geomagnetic Indices, in: Geophysical Monograph 22, American Geophysical Union, Washington D.C., USA, 1980. a
McPherron, R. L., Russell, C. T., and Aubry, M. P.: Satellite studies of magnetospheric substorms on 15 August 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 78, 3131–3149, https://doi.org/10.1029/JA078i016p03131, 1973. a
Mitra, A. P.: Ionospheric Effects of Solar Flares, Astrophysics and Space Science Library (ASSL), 46, Springer, Dordrecht, The Netherlands, 305 pp., https://doi.org/10.1007/978-94-010-2231-6, 1974. a
Nwankwo, V. U. J.: Space Weather: Responses of the Atmosphere to Solar Activity and Its Implications for LEO Satellites Aerodynamic Drag, in: Exploring the Universe: From Near Space to Extra-Galactic, edited by: Mukhopadhyay, B. and Sasmal, S., Springer Int. Publ., Switzerland, 2018. a
Nwankwo, V. U. J. and Chakrabarti, K. S.: Effects of plasma drag on low Earth orbiting satellites due to heating of Earth's atmosphere by coronal mass ejections, arXiv:1305.0233c1, https://arxiv.org/abs/1305.0233, 2013. a
Nwankwo, V. U. J and Chakrabarti, K. S.: Theoretical modeling of drag force impact on a model international space station (ISS) during variation of solar activity, T. Jpn. Soc. Aeronaut. S., 12, 47–53, 2014. a
Nwankwo, V. U. J. and Chakrabarti, K. S.: Effects of space weather on the ionosphere and LEO satellites' orbital trajectory in equatorial, low and middle latitude, Adv. Space Res., 61, 1880–1889, https://doi.org/10.1016/j.asr.2017.12.034, 2018.
Nwankwo, V. U. J., Chakrabarti, K. S., and Weigel, R. S.: Effects of plasma drag on low Earth orbiting satellites due to solar forcing induced perturbations and heating, Adv. Space Res., 56, 47–56, https://doi.org/10.1016/j.asr.2015.03.044, 2015. a, b, c
Nwankwo, V. U. J., Denig, W., Ajakaiye, M. P., Wahabbi Akanni, J. F., Raulin, J.-P., Correia, E., and Enoh, J. E.: Simulation of atmospheric drag effect on low Earth orbit satellites during intervals of perturbed and quiet geomagnetic conditions in the magnetosphere-ionosphere system, in: 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Ayobo, Nigeria, 18–21 March 2020, 1–7, https://doi.org/10.1109/ICMCECS47690.2020.247003, 2020a. a, b
Nwankwo, V. U. J., Jibiri, N. N., and Kio, M. T.: The impact of space radiation environment on satellites operation in near-Earth space, in: Satellites Missions and Technologies for Geosciences, edited by: Demyanov, V. and Becedas, J., InTech Open Publishing, London, UK, https://doi.org/10.5772/intechopen.90115, 2020b. a
Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic
Fields, Astrophys. J., 128, 664–676, https://doi.org/10.1086/146579, 1958. a
Phillips, K. J. H.: Solar flares: A review, Vistas Astron., 34, 353–365, https://doi.org/10.1016/0083-6656(91)90014-J, 1991. a
Picone, J. M., Hedin, A. E., Drobm, D. P., and Aikin, A. C.: NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, 468–1484, https://doi.org/10.1029/2002JA009430, 2002. a
Pokhotelov, D., Mitchell, C. N., Jayachandran, P. T. MacDougall, J. W., and Denton, M. H.: Ionospheric response to the corotating interaction region – driven geomagnetic storm of October 2002, J. Geophys. Res., 114, A12311, https://doi.org/10.1029/2009JA014216, 2009. a
Posner, A., Bothmer, V., Thompson, B. J., Kunow, H., Heber, B., Müller‐Mellin, R., Lazarus, A. J., Szabo, A., Mikić, Z., and Linker, J. A.: In‐ecliptic CIR‐associated energetic particle events and polar coronal hole structures: SOHO/COSTEP observations for the Whole Sun Month Campaign, J. Geophys. Res., 104, 9881–9890, https://doi.org/10.1029/98JA02654, 1999. a
Pudovkin, M. I., Semenov, V. S., Kotikov, A. L., and Shishkina, E. M.: Dynamics of auroral electrojets and energetics of substorms, J. Atmos. Terr. Phys., 57, 187–192, https://doi.org/10.1016/0021-9169(93)E0033-6, 1995. a
Raeder, J., Wang, Y. L., Fuller-Rowell, T. J., and Singer, H. J.: Global simulation of magnetospheric space weather effects of the Bastille day
storm, Sol. Phys., 204, 325–338, 2001. a
Rose, D. C. and Ziauddin, S.: The polar cap absorption effect, Space Sci. Rev., 1, 115–134, https://doi.org/10.1007/BF00174638, 1962. a
Rostoker, G.: Geomagnetic indices, Rev. Geophys., 10, 935–950, https://doi.org/10.1029/RG010i004p00935, 1972. a
Ryan, J. M., Lockwood, J. A., and Debrunner, H.: Solar Energetic Particles, Space Sci. Rev., 93, 35–53, https://doi.org/10.1023/A:1026580008909, 2000. a
Sauer, H. H. and Wilkinson, D. C.: Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons, Space Weather, 6, S12002, https://doi.org/10.1029/2008SW000399, 2008. a
Schatten, K.: Large Scale Properties of the Interplanetary Magnetic Field, NASA Goddard Space Flight Center, N71-20467, available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710010992.pdf (last access: 16 March 2020), 1971. a
Sidi M. J.: Spacecraft Dynamics and Control, Cambridge University Press, Cambridge, UK, 1997. a
Song, P., Singer, H. J., and Siscoe, G. L.: Space Weather, AGU Geophysical Monograph Series, AGU, Washington, DC, Number 125, 96, 440 pp., ISBN 13:9780875909844, 2001. a
Srivastava, N. and Venkatakrishnan, P.: Relationship between CME Speed and Geomagnetic Storm Intensity, Geophys. Res. Lett., 29, 9, https://doi.org/10.1029/2001GL013597, 2002. a
Tapping, K. F.: The 10.7 cm solar radio flux (F10.7), Space Weather, 11, 394–406, https://doi.org/10.1002/swe.20064, 2013. a
Walterscheid, R. L.: Solar cycle effects on the upper atmosphere – Implications for satellite drag, Journal of Spacecraft and Rockets, in: Proc. AIAA, Aerospace Engineering Conference and Show, Los Angeles, California, USA, 14–16 February 1989, 439–444, available at: https://doi.org/10.2514/3.26089, 1989. a
Webber, W. R., McDonald, F. B., Lockwood, J. A., and Heikkila, B.: The effect of the 14 July 2000 “Bastille Day” solar flare event on > 70 MeV galactic cosmic rays observed at V1 and V2 in the distant heliosphere, Geophys. Res. Lett., 29, 1377, https://doi.org/10.1029/2002GL014729, 2002.
a
Wertz, J. and Larson, W. J.: Space Mission Analysis and Design, edn. 3, Kluwer Academy, El Segundo, California, USA, 145 pp., 1999. a
Yermolaev, Y. I., Lodkina, G. I., Nikolaeva, N. S., and Yermolaev, M. Y.: Geoeffectiveness of Solar and Interplanetary Structures and Generation of Strong Geomagnetic Storms, in: Extreme Events in Geospace – Origins, Predictability and Consequences, Elsevier, USA, edited by: Buzulukova, N., 99–113, https://doi.org/10.1016/B978-0-12-812700-1.00004-2, 2018. a
Short summary
In this work, we simulated the effect of atmospheric drag on satellites in low Earth orbit (LEO) during 1-month intervals of disturbed and quiet solar geomagnetic activity. Our results show that geomagnetic storms (e.g. the Bastille Day event) can cause a significant drop in LEO satellite altitudes and increase their background orbit decay rate by 50–70 %. This work can contribute to improved situational awareness and mitigation of potential threats solar energetic events pose to satellites.
In this work, we simulated the effect of atmospheric drag on satellites in low Earth orbit (LEO)...