Articles | Volume 38, issue 4
Ann. Geophys., 38, 901–918, 2020
https://doi.org/10.5194/angeo-38-901-2020
Ann. Geophys., 38, 901–918, 2020
https://doi.org/10.5194/angeo-38-901-2020

Regular paper 28 Jul 2020

Regular paper | 28 Jul 2020

Polar substorm on 7 December 2015: preonset phenomena and features of auroral breakup

Vladimir V. Safargaleev et al.

Related authors

Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021,https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Even moderate geomagnetic pulsations can cause fluctuations of foF2 frequency of the auroral ionosphere
Nadezda Yagova, Alexander Kozlovsky, Evgeny Fedorov, and Olga Kozyreva
Ann. Geophys., 39, 549–562, https://doi.org/10.5194/angeo-39-549-2021,https://doi.org/10.5194/angeo-39-549-2021, 2021
Short summary
Improved method of estimating temperatures at meteor peak heights
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021,https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Resolving the ambiguous direction of arrival of weak meteor radar trail echoes
Daniel Kastinen, Johan Kero, Alexander Kozlovsky, and Mark Lester
Atmos. Meas. Tech., 14, 3583–3596, https://doi.org/10.5194/amt-14-3583-2021,https://doi.org/10.5194/amt-14-3583-2021, 2021
Short summary
Atmospheric tomography using the Nordic Meteor Radar Clusterand Chilean Observation Network De Meteor Radars: networkdetails and 3DVAR retrieval
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbons, and Nicholas Mitchell
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-124,https://doi.org/10.5194/amt-2021-124, 2021
Revised manuscript accepted for AMT
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Storms and substorms
Seasonal features of geomagnetic activity: evidence for solar activity dependence?
Adriane Marques de Souza Franco, Rajkumar Hajra, Ezequiel Echer, and Mauricio José Alves Bolzan
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-27,https://doi.org/10.5194/angeo-2021-27, 2021
Revised manuscript accepted for ANGEO
Short summary
Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017
Nadia Imtiaz, Waqar Younas, and Majid Khan
Ann. Geophys., 38, 359–372, https://doi.org/10.5194/angeo-38-359-2020,https://doi.org/10.5194/angeo-38-359-2020, 2020
Short summary
Influence of the Earth's ring current strength on Størmer's allowed and forbidden regions of charged particle motion
Alexander S. Lavrukhin, Igor I. Alexeev, and Ilya V. Tyutin
Ann. Geophys., 37, 535–547, https://doi.org/10.5194/angeo-37-535-2019,https://doi.org/10.5194/angeo-37-535-2019, 2019
Short summary
Dynamics of a geomagnetic storm on 7–10 September 2015 as observed by TWINS and simulated by CIMI
Joseph D. Perez, James Edmond, Shannon Hill, Hanyun Xu, Natalia Buzulukova, Mei-Ching Fok, Jerry Goldstein, David J. McComas, and Phil Valek
Ann. Geophys., 36, 1439–1456, https://doi.org/10.5194/angeo-36-1439-2018,https://doi.org/10.5194/angeo-36-1439-2018, 2018
Short summary

Cited articles

Agapitov, O., Glassmeier, K.-H., Plaschke, F., Auster, H.-U., Constantinescu, D., Angelopoulos, V., Magnes, W., Nakamura, R., Carlson, Ch. W., Frey, S., and McFadden J. P.: Surface waves and field line resonances: A THEMIS case study, J. Geophys. Res., 114, A00C27, https://doi.org/10.1029/2008JA013553, 2009. 
Aikio, A. T., Lakkala, T., Kozlovsky, A., and Williams, P. J. S.: Current systems of stable drifting auroral arcs in the evening sector, J. Geophys. Res., 107, 1424, https://doi.org/10.1029/2001JA009172, 2002. 
Akasofu, S.-I.: Physics of Magnetospheric Substorms, Astrophysics and Space Science Library, Vol. 47, edited by: Reidel, D., Hingham, Mass., 619 pp., 1977. 
Akasofu, S.-I. and Kimball, D. S.: The dynamics of the aurora – I: Instability of aurora, J. Atmos. Terr. Phys., 26, 205–206, https://doi.org/10.1016/0021-9169(64)90147-3, 1964. 
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planet. Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. 
Download
Short summary
Comprehensive analysis of a moderate substorm was performed using optical observations inside the auroral oval and in the polar cap, combined with data from satellites, radars, and ground magnetometers. The onset took place near the poleward boundary of the auroral oval that is not typical for classical substorms. The data fit to the near-tail current disruption scenario of the substorm onset. The role of the 15 min oscillations in the IMF Bz component in the substorm initiation is discussed.