Articles | Volume 38, issue 4
https://doi.org/10.5194/angeo-38-861-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-861-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Radar observability of near-Earth objects using EISCAT 3D
Swedish Institute of Space Physics (IRF), 98192 Kiruna, Sweden
Department of Physics, Umeå University, 90187 Umeå, Sweden
Torbjørn Tveito
Department of Physics and Technology, Arctic University of Norway (UiT), 9037 Tromsø, Norway
Juha Vierinen
Department of Physics and Technology, Arctic University of Norway (UiT), 9037 Tromsø, Norway
Mikael Granvik
Division of Space Technology, Luleå University of Technology, 98128 Kiruna, Sweden
Department of Physics, University of Helsinki, 00014 Helsinki, Finland
Related authors
Daniel Kastinen, Johan Kero, Alexander Kozlovsky, and Mark Lester
Atmos. Meas. Tech., 14, 3583–3596, https://doi.org/10.5194/amt-14-3583-2021, https://doi.org/10.5194/amt-14-3583-2021, 2021
Short summary
Short summary
When a meteor enters the atmosphere, it causes a trail of diffusing plasma that moves with the neutral wind. An interferometric radar system can measure such trails and determine its location. However, there is a chance of determining the wrong position due to noise. We simulate this behaviour and use the simulations to successfully determine the true location of ambiguous events. We also successfully test two simple temporal integration methods for avoiding such erroneous determinations.
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020, https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary
Short summary
The behaviour of position determination with interferometric radar systems and possible ambiguities therein depends on the spatial configuration of the radar-receiving antennas and their individual characteristics. We have simulated the position determination performance of five different radar systems. These simulations showed that ambiguities are dynamic and need to be examined on a case-by-case basis. However, the simulations can be used to analyse and understand previously ambiguous data.
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, and Karl M. Laundal
EGUsphere, https://doi.org/10.5194/egusphere-2024-802, https://doi.org/10.5194/egusphere-2024-802, 2024
Short summary
Short summary
The EISCAT_3D radar is a new ionospheric radar under construction in the Fennoscandia region. The radar will make measurements of plasma characteristics at altitudes above approximately 60 km. The capability of the system to make these measurements on spatial scales of less than 100 m using the multiple digitised signals from each of the radar antenna panels is highlighted. There are many ionospheric small-scale processes that will be further resolved using the techniques discussed here.
Theresa Rexer, Björn Gustavsson, Juha Vierinen, Andres Spicher, Devin Ray Huyghebaert, Andreas Kvammen, Robert Gillies, and Asti Bhatt
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2023-18, https://doi.org/10.5194/gi-2023-18, 2024
Preprint under review for GI
Short summary
Short summary
We present a second-level calibration method for electron density measurements from multi-beam incoherent scatter radars. It is based on the well-known Flat field correction method used in imaging and photography. The methods improve data quality and useability as they account for unaccounted, and unpredictable variations in the radar system. This is valuable for studies where inter-beam calibration is important such as studies of polar cap patches, plasma irregularities and turbulence.
Johann Stamm, Juha Vierinen, Björn Gustavsson, and Andres Spicher
Ann. Geophys., 41, 55–67, https://doi.org/10.5194/angeo-41-55-2023, https://doi.org/10.5194/angeo-41-55-2023, 2023
Short summary
Short summary
The study of some ionospheric events benefit from the knowledge of how the physics varies over a volume and over time. Examples are studies of aurora or energy deposition. With EISCAT3D, measurements of ion velocity vectors in a volume will be possible for the first time. We present a technique that uses a set of such measurements to estimate electric field and neutral wind. The technique relies on adding restrictions to the estimates. We successfully consider restrictions based on physics.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
Derek McKay, Juha Vierinen, Antti Kero, and Noora Partamies
Geosci. Instrum. Method. Data Syst., 11, 25–35, https://doi.org/10.5194/gi-11-25-2022, https://doi.org/10.5194/gi-11-25-2022, 2022
Short summary
Short summary
When radio waves from our galaxy enter the Earth's atmosphere, they are absorbed by electrons in the upper atmosphere. It was thought that by measuring the amount of absorption, it would allow the height of these electrons in the atmosphere to be determined. If so, this would have significance for future instrument design. However, this paper demonstrates that it is not possible to do this, but it does explain how multiple-frequency measurements can nevertheless be useful.
Johann Stamm, Juha Vierinen, and Björn Gustavsson
Ann. Geophys., 39, 961–974, https://doi.org/10.5194/angeo-39-961-2021, https://doi.org/10.5194/angeo-39-961-2021, 2021
Short summary
Short summary
Measurements of the electric field and neutral wind in the ionosphere are important for understanding energy flows or electric currents. With incoherent scatter radars (ISRs), we can measure the velocity of the ions, which depends on both the electrical field and the neutral wind. In this paper, we investigate methods to use ISR data to find reasonable values for both parameters. We find that electric field can be well measured down to 125 km height and neutral wind below this height.
Daniel Kastinen, Johan Kero, Alexander Kozlovsky, and Mark Lester
Atmos. Meas. Tech., 14, 3583–3596, https://doi.org/10.5194/amt-14-3583-2021, https://doi.org/10.5194/amt-14-3583-2021, 2021
Short summary
Short summary
When a meteor enters the atmosphere, it causes a trail of diffusing plasma that moves with the neutral wind. An interferometric radar system can measure such trails and determine its location. However, there is a chance of determining the wrong position due to noise. We simulate this behaviour and use the simulations to successfully determine the true location of ambiguous events. We also successfully test two simple temporal integration methods for avoiding such erroneous determinations.
Torbjørn Tveito, Juha Vierinen, Björn Gustavsson, and Viswanathan Lakshmi Narayanan
Ann. Geophys., 39, 427–438, https://doi.org/10.5194/angeo-39-427-2021, https://doi.org/10.5194/angeo-39-427-2021, 2021
Short summary
Short summary
This work explores the role of EISCAT 3D as a tool for planetary mapping. Due to the challenges inherent in detecting the signals reflected from faraway bodies, we have concluded that only the Moon is a viable mapping target. We estimate the impact of the ionosphere on lunar mapping, concluding that its distorting effects should be easily manageable. EISCAT 3D will be useful for mapping the lunar nearside due to its previously unused frequency (233 MHz) and its interferometric capabilities.
Johann Stamm, Juha Vierinen, Juan M. Urco, Björn Gustavsson, and Jorge L. Chau
Ann. Geophys., 39, 119–134, https://doi.org/10.5194/angeo-39-119-2021, https://doi.org/10.5194/angeo-39-119-2021, 2021
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020, https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary
Short summary
The behaviour of position determination with interferometric radar systems and possible ambiguities therein depends on the spatial configuration of the radar-receiving antennas and their individual characteristics. We have simulated the position determination performance of five different radar systems. These simulations showed that ambiguities are dynamic and need to be examined on a case-by-case basis. However, the simulations can be used to analyse and understand previously ambiguous data.
Jorge Luis Chau, Juan Miguel Urco, Juha Pekka Vierinen, Ryan Andrew Volz, Matthias Clahsen, Nico Pfeffer, and Jörg Trautner
Atmos. Meas. Tech., 12, 2113–2127, https://doi.org/10.5194/amt-12-2113-2019, https://doi.org/10.5194/amt-12-2113-2019, 2019
Short summary
Short summary
New systems to study the mesosphere are introduced. They result from the reengineering of previous systems, by making use of MIMO, spread-spectrum and compressed-sensing techniques that are widely used in telecommunications. The interferometer configuration is now implemented in transmission, making the location of meteor echoes possible with just one antenna on reception. Our novel concept makes the study of a mesosphere volume from different viewing points on the ground feasible and easy.
Jorge L. Chau, Derek McKay, Juha P. Vierinen, Cesar La Hoz, Thomas Ulich, Markku Lehtinen, and Ralph Latteck
Atmos. Chem. Phys., 18, 9547–9560, https://doi.org/10.5194/acp-18-9547-2018, https://doi.org/10.5194/acp-18-9547-2018, 2018
Short summary
Short summary
Combining a phased-array power radar and a phased-array radio telescope, we have been able to identify and characterized horizontal structures and movement of noctilucent clouds, but at 3 m scales instead of optical scales. As a byproduct of our observations, we have studied their angular dependence. We show a new alternative to study these clouds on routine basis and therefore study the atmospheric dynamics that modulate them.
Derek McKay, Noora Partamies, and Juha Vierinen
Ann. Geophys., 36, 59–69, https://doi.org/10.5194/angeo-36-59-2018, https://doi.org/10.5194/angeo-36-59-2018, 2018
Short summary
Short summary
This study used the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Finnish Meteorological Institute's all-sky camera. It looked at radio absorption and optical emission of the long east–west band of aurora (known as the growth phase arc), which forms at the start of substorms. The study found that radio absorption was consistently south of the bright auroral arc and that optical pulsating aurora occurs in the boundary region between the radio absorption zone and the bright arc.
Cited articles
Balanis, C. A.: Advanced engineering electromagnetics, John Wiley & Sons, Hoboken, New Jersey,
1999. a
Banka, D., Leushacke, L., and Mehrholz, D.: Beam-park-experiment-1/2000 with
TIRA, Space Debris, 2, 83–96, 2000. a
Beech, M. and Brown, P.: Fireball flickering: the case for indirect
measurement of meteoroid rotation rates, Planet. Space Sci., 48,
925–932, https://doi.org/10.1016/S0032-0633(00)00058-1, 2000. a
Benner, L. A. M., Busch, M. W., Giorgini, J. D., Taylor, P. A., and
Margot, J. L.: Radar Observations of Near-Earth and Main-Belt Asteroids, in: Asteroids IV, edited by: Michel, P., DeMeo, F. E., and Bottke, W. F., University of Arizona Press, Tucson,
165–182, https://doi.org/10.2458/azu_uapress_9780816532131-ch009, 2015. a
Bolin, B., Jedicke, R., Granvik, M., Brown, P., Howell, E., Nolan,
M. C., Jenniskens, P., Chyba, M., Patterson, G., and Wainscoat, R.:
Detecting Earth's temporarily-captured natural satellites-Minimoons,
Icarus, 241, 280–297, https://doi.org/10.1016/j.icarus.2014.05.026, 2014. a, b
Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison,
H. F., Michel, P., and Metcalfe, T. S.: Debiased Orbital and Absolute
Magnitude Distribution of the Near-Earth Objects, Icarus, 156, 399–433,
https://doi.org/10.1006/icar.2001.6788, 2002. a
Braun, G.: GESTRA – Experimental space monitoring radar, available at: https://event.dlr.de/en/ila2018/gestra/ (last access: 13 March 2020), 2018. a
Brown, P., Spalding, R., ReVelle, D. O., Tagliaferri, E., and Worden, S.: The
flux of small near-Earth objects colliding with the Earth, Nature, 420,
294–296, https://doi.org/10.1038/nature01238, 2002. a, b, c, d
Busch, M. W., Kulkarni, S. R., Brisken, W., Ostro, S. J., Benner, L. A.,
Giorgini, J. D., and Nolan, M. C.: Determining asteroid spin states using
radar speckles, Icarus, 209, 535–541, 2010. a
Campbell, B. A.: Planetary geology with imaging radar: insights from
earth-based lunar studies, 2001–2015, Astr.
Soc. P., 128, 062001, https://doi.org/10.1088/1538-3873/128/964/062001, 2016. a
Čapek, D.: Rotation of cometary meteoroids, Astron.
Astrophys., 568, A39, https://doi.org/10.1051/0004-6361/201423857, 2014. a
Chesley, S. R. and Chodas, P. W.: Asteroid close approaches: analysis and
potential impact detection, in: Asteroids III, University of Arizona Press, Tucson, AZ, USA, 55–69, 2002. a
Fedorets, G., Granvik, M., Jones, R. L., Jurić, M., and Jedicke,
R.: Discovering Earth's transient moons with the Large Synoptic Survey
Telescope, Icarus, 338, 113517, https://doi.org/10.1016/j.icarus.2019.113517, 2020. a, b
Fowler, J. and Chillemi, J.: IRAS asteroid data processing, edited by: Tedesco, E. F., Veeder, G. J., Fowler, J. W., and Chillemi, J. R., The IRAS Minor Planet Survey, Technical Report PL-TR-92-2049, Phillips Laboratory, Hanscom AF Base, MA, 1992. a
Granvik, M., Vaubaillon, J., and Jedicke, R.: The population of natural
Earth satellites, Icarus, 218, 262–277, https://doi.org/10.1016/j.icarus.2011.12.003,
2012. a, b, c
Granvik, M., Jedicke, R., Bolin, B., Chyba, M., and Patterson, G.:
Earth's Temporarily-Captured Natural Satellites – The First Step towards
Utilization of Asteroid Resources, Asteroids: Prospective Energy and Material Resources, edited by: Badescu, V., Springer, Berlin, 151–167,
https://doi.org/10.1007/978-3-642-39244-3_6, 2013. a
Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F.,
Beshore, E., Vokrouhlický, D., Delbò, M., and Michel, P.:
Super-catastrophic disruption of asteroids at small perihelion distances,
Nature, 530, 303–306, https://doi.org/10.1038/nature16934, 2016. a
Granvik, M., Morbidelli, A., Jedicke, R., Bolin, B., Bottke, W. F.,
Beshore, E., Vokrouhlický, D., Nesvorný, D., and Michel, P.:
Debiased orbit and absolute-magnitude distributions for near-Earth objects,
Icarus, 312, 181–207, https://doi.org/10.1016/j.icarus.2018.04.018, 2018. a
Harris, A. W. and Harris, A. W.: On the Revision of Radiometric Albedos
and Diameters of Asteroids, Icarus, 126, 450–454,
https://doi.org/10.1006/icar.1996.5664, 1997. a
Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta,
E., Allsman, R., Alonso, D., AlSayyad, Y., Anderson, S. F., Andrew,
J., Angel, J. R. P., Angeli, G. Z., Ansari, R., Antilogus, P.,
Araujo, C., Armstrong, R., Arndt, K. T., Astier, P., Aubourg,
É., Auza, N., Axelrod, T. S., Bard, D. J., Barr, J. D., Barrau,
A., Bartlett, J. G., Bauer, A. E., Bauman, B. J., Baumont, S.,
Bechtol, E., Bechtol, K., Becker, A. C., Becla, J., Beldica, C.,
Bellavia, S., Bianco, F. B., Biswas, R., Blanc, G., Blazek, J.,
Bland ford, R. D., Bloom, J. S., Bogart, J., Bond, T. W., Booth,
M. T., Borgland, A. W., Borne, K., Bosch, J. F., Boutigny, D.,
Brackett, C. A., Bradshaw, A., Brand t, W. N., Brown, M. E.,
Bullock, J. S., Burchat, P., Burke, D. L., Cagnoli, G., Calabrese,
D., Callahan, S., Callen, A. L., Carlin, J. L., Carlson, E. L.,
Chand rasekharan, S., Charles-Emerson, G., Chesley, S., Cheu, E. C.,
Chiang, H.-F., Chiang, J., Chirino, C., Chow, D., Ciardi, D. R.,
Claver, C. F., Cohen-Tanugi, J., Cockrum, J. J., Coles, R.,
Connolly, A. J., Cook, K. H., Cooray, A., Covey, K. R., Cribbs, C.,
Cui, W., Cutri, R., Daly, P. N., Daniel, S. F., Daruich, F.,
Daubard, G., Daues, G., Dawson, W., Delgado, F., Dellapenna, A.,
de Peyster, R., de Val-Borro, M., Digel, S. W., Doherty, P.,
Dubois, R., Dubois-Felsmann, G. P., Durech, J., Economou, F.,
Eifler, T., Eracleous, M., Emmons, B. L., Fausti Neto, A.,
Ferguson, H., Figueroa, E., Fisher-Levine, M., Focke, W., Foss,
M. D., Frank, J., Freemon, M. D., Gangler, E., Gawiser, E., Geary,
J. C., Gee, P., Geha, M., Gessner, C. J. B., Gibson, R. R.,
Gilmore, D. K., Glanzman, T., Glick, W., Goldina, T., Goldstein,
D. A., Goodenow, I., Graham, M. L., Gressler, W. J., Gris, P., Guy,
L. P., Guyonnet, A., Haller, G., Harris, R., Hascall, P. A., Haupt,
J., Hernand ez, F., Herrmann, S., Hileman, E., Hoblitt, J.,
Hodgson, J. A., Hogan, C., Howard, J. D., Huang, D., Huffer, M. E.,
Ingraham, P., Innes, W. R., Jacoby, S. H., Jain, B., Jammes, F.,
Jee, M. J., Jenness, T., Jernigan, G., Jevremović, D., Johns,
K., Johnson, A. S., Johnson, M. W. G., Jones, R. L., Juramy-Gilles,
C., Jurić, M., Kalirai, J. S., Kallivayalil, N. J., Kalmbach, B.,
Kantor, J. P., Karst, P., Kasliwal, M. M., Kelly, H., Kessler, R.,
Kinnison, V., Kirkby, D., Knox, L., Kotov, I. V., Krabbendam,
V. L., Krughoff, K. S., Kubánek, P., Kuczewski, J., Kulkarni, S.,
Ku, J., Kurita, N. R., Lage, C. S., Lambert, R., Lange, T.,
Langton, J. B., Le Guillou, L., Levine, D., Liang, M., Lim, K.-T.,
Lintott, C. J., Long, K. E., Lopez, M., Lotz, P. J., Lupton, R. H.,
Lust, N. B., MacArthur, L. A., Mahabal, A., Mand elbaum, R.,
Markiewicz, T. W., Marsh, D. S., Marshall, P. J., Marshall, S.,
May, M., McKercher, R., McQueen, M., Meyers, J., Migliore, M.,
Miller, M., Mills, D. J., Miraval, C., Moeyens, J., Moolekamp,
F. E., Monet, D. G., Moniez, M., Monkewitz, S., Montgomery, C.,
Morrison, C. B., Mueller, F., Muller, G. P., Muñoz Arancibia, F.,
Neill, D. R., Newbry, S. P., Nief, J.-Y., Nomerotski, A., Nordby,
M., O'Connor, P., Oliver, J., Olivier, S. S., Olsen, K., O'Mullane,
W., Ortiz, S., Osier, S., Owen, R. E., Pain, R., Palecek, P. E.,
Parejko, J. K., Parsons, J. B., Pease, N. M., Peterson, J. M.,
Peterson, J. R., Petravick, D. L., Libby Petrick, M. E., Petry,
C. E., Pierfederici, F., Pietrowicz, S., Pike, R., Pinto, P. A.,
Plante, R., Plate, S., Plutchak, J. P., Price, P. A., Prouza, M.,
Radeka, V., Rajagopal, J., Rasmussen, A. P., Regnault, N., Reil,
K. A., Reiss, D. J., Reuter, M. A., Ridgway, S. T., Riot, V. J.,
Ritz, S., Robinson, S., Roby, W., Roodman, A., Rosing, W.,
Roucelle, C., Rumore, M. R., Russo, S., Saha, A., Sassolas, B.,
Schalk, T. L., Schellart, P., Schindler, R. H., Schmidt, S.,
Schneider, D. P., Schneider, M. D., Schoening, W., Schumacher, G.,
Schwamb, M. E., Sebag, J., Selvy, B., Sembroski, G. H., Seppala,
L. G., Serio, A., Serrano, E., Shaw, R. A., Shipsey, I., Sick, J.,
Silvestri, N., Slater, C. T., Smith, J. A., Smith, R. C., Sobhani,
S., Soldahl, C., Storrie-Lombardi, L., Stover, E., Strauss, M. A.,
Street, R. A., Stubbs, C. W., Sullivan, I. S., Sweeney, D.,
Swinbank, J. D., Szalay, A., Takacs, P., Tether, S. A., Thaler,
J. J., Thayer, J. G., Thomas, S., Thornton, A. J., Thukral, V.,
Tice, J., Trilling, D. E., Turri, M., Van Berg, R., Vanden Berk,
D., Vetter, K., Virieux, F., Vucina, T., Wahl, W., Walkowicz, L.,
Walsh, B., Walter, C. W., Wang, D. L., Wang, S.-Y., Warner, M.,
Wiecha, O., Willman, B., Winters, S. E., Wittman, D., Wolff, S. C.,
Wood-Vasey, W. M., Wu, X., Xin, B., Yoachim, P., and Zhan, H.:
LSST: From Science Drivers to Reference Design and Anticipated Data
Products, Astrophys. J., 873, 111,
https://doi.org/10.3847/1538-4357/ab042c, 2019. a
Jedicke, R., Bolin, B. T., Bottke, W. F., Chyba, M., Fedorets, G.,
Granvik, M., Jones, L., and Urrutxua, H.: Earth's Minimoons:
Opportunities for Science and Technology, Frontiers in Astronomy and Space
Sciences, 5, 13, https://doi.org/10.3389/fspas.2018.00013, 2018. a
Kaasalainen, M. and Viikinkoski, M.: Shape reconstruction of irregular bodies
with multiple complementary data sources, Astron. Astrophys., 543,
A97, https://doi.org/10.1051/0004-6361/201219267, 2012. a
Kessler, D. J., Landry, P. M., Gabbard, J. R., and Moran, J. L. T.:
Ground radar detection of meteoroids in space, in: Solid Particles in the
Solar System, edited by: Halliday, I. and McIntosh, B. A., Vol. 90 of
IAU Symposium, 137–139, Proceedings of the Symposium, Ottawa, Canada, D. Reidel Publishing Co., Dordrecht, 1980. a
Krisko, P. H.: NASA's New Orbital Debris Engineering Model, ORDEM 2010, in:
Making Safety Matter, Proceedings of the fourth IAASS Conference, 19–21 May 2010, Huntsville, AL, edited by: Lacoste-Francis, H., ESA-SP Vol. 680, p. 50,
2010. a
Krisko, P. H.: The new NASA orbital debris engineering model ORDEM 3.0, in:
AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, p. 4227, American Institute of Aeronautics and Astronautics, Reston (HQ), VA, United States, https://doi.org/10.2514/6.2014-4227, 2014. a
Kwiatkowski, T., Kryszczyńska, A., Polińska, M., Buckley,
D. A. H., O'Donoghue, D., Charles, P. A., Crause, L., Crawford, S.,
Hashimoto, Y., Kniazev, A., Loaring, N., Romero Colmenero, E.,
Sefako, R., Still, M., and Vaisanen, P.: Photometry of 2006 RH{120}:
an asteroid temporary captured into a geocentric orbit, Astron. Astrophys., 495, 967–974,
https://doi.org/10.1051/0004-6361:200810965, 2009. a
Li, A., Close, S., and Markannen, J.: EISCAT Space Debris after the
International Polar Year (IPY), in: Conference Proceedings from IAC, Naples, Italy,
Vol. 12, p. A6, International Astronautical Federation, Paris, France, 2012. a
Liou, J.-C., Matney, M. J., Anz-Meador, P. D., Kessler, D., Jansen, M., and
Theall, J. R.: The new NASA orbital debris engineering model ORDEM2000, 2002. a
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M.,
Engler, N., Gustavsson, B., Heinselman, C., Kero, J., Kosch, M., Lamy, H., Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska I., and Vierinen, J.: The science
case for the EISCAT_3D radar, Prog. Earth Planet. Sci., 2,
21, https://doi.org/10.1186/s40645-015-0051-8, 2015. a
Morbidelli, A., Delbo, M., Granvik, M., Bottke, W. F., Jedicke, R.,
Bolin, B., Michel, P., and Vokrouhlicky, D.: Debiased albedo
distribution for Near Earth Objects, Icarus, 340, 113631,
https://doi.org/10.1016/j.icarus.2020.113631, 2020. a
Naidu, S. P., Benner, L. A., Margot, J.-L., Busch, M. W., and Taylor, P. A.:
Capabilities of Earth-based radar facilities for near-Earth asteroid
observations, Astron. J., 152, 4, https://doi.org/10.3847/0004-6256/152/4/99, 2016. a, b, c
Ostro, S. J.: The role of groundbased radar in near-Earth object hazard
identification and mitigation, Univ. of Arizona Press, Pasadena, CA, United States, 1994. a
Ostro, S. J., Connelly, R., and Belkora, L.: Asteroid shapes from radar echo
spectra: A new theoretical approach, Icarus, 73, 15–24, 1988. a
Pravec, P., Harris, A. W., and Michalowski, T.: Asteroid rotations, in: Asteroids
III, edited by: Bottke Jr., W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., University of Arizona Press, Tucson, 113–122, 2002. a
Rein, H. and Liu, S.-F.: REBOUND: an open-source multi-purpose N-body code
for collisional dynamics, Astron. Astrophys., 537, A128,
https://doi.org/10.1051/0004-6361/201118085, 2012. a
Rein, H. and Spiegel, D. S.: IAS15: a fast, adaptive, high-order
integrator for gravitational dynamics, accurate to machine precision over a
billion orbits, Mon. Not. R. Astron. Soc., 446,
1424–1437, https://doi.org/10.1093/mnras/stu2164, 2015. a
Solin, O. and Granvik, M.: Monitoring near-Earth-object discoveries for
imminent impactors, Astron. Astrophys., 616, A176, https://doi.org/10.1051/0004-6361/201832747,
2018. a
Taylor, P., Rivera-Valentín, E. G., Bonsall, A., Becker, T. M., Benner,
A., Bhiravarasu, S. S., Brozovic, M., Busch, M. W., Giorgini, J. D., Harris,
A. W., Magri, C., Mainzer, A. K., Margot, J.-L., Marshall, S. E., Masiero, J. R., Naidu, S. P., Nolan, M. C., Patterson, G. W., Prockter, L. M., Sizemore, H. G., Swindle, T. D., Venditti, F. C. F., and Virkki, A. K.: Planetary Radar Astronomy with Ground-Based Astrophysical
Assets, Astro2020 Science White Paper, American Astronomical Society, Washington, D.C., USA, 2019. a
Taylor, P. A., Howell, E. S., Nolan, M. C., and Thane, A. A.: The
Shape and Spin Distributions of Near-Earth Asteroids Observed with the
Arecibo Radar System, in: American Astronomical Society Meeting Abstracts
#220, Vol. 220 of American Astronomical Society Meeting Abstracts,
p. 128.02, American Astronomical Society, Washington, D.C., USA, 2012. a
Thompson, T. W., Campbell, B. A., and Bussey, D. B. J.: 50 Years of Arecibo
Lunar radar mapping, URSI Radio Science Bulletin, 2016, 23–35, 2016. a
Vierinen, J.: Indian anti-satellite debris measured with the EISCAT Tromsø
radar, available at: http://www.radio-science.net/2019/04/indian-anti-satellite-debris-measured.html (last access: 13 March 2020),
2019. a
Vierinen, J. and Lehtinen, M. S.: 32-cm wavelength radar mapping of the moon,
in: 2009 European Radar Conference (EuRAD), Rome, Italy, 222–225, IEEE, 2009. a
Vierinen, J., Markkanen, J., and Krag, H.: High power large aperture radar
observations of the Iridium-COSMOS collision, in: Proceedings of the Fifth European Conference on Space Debris, 30 March–2 April 2009, Darmstadt, Germany, edited by: Lacoste, H., ESA-SP Vol. 672, European Space Agency, 2009. a
Vierinen, J., Markkanen, J., Krag, H., Siminski, J., and Mancas, A.: Use of
EISCAT 3D for Observations of Space Debris, 7th European Conference on Space Debris ESA/ESOC, Darmstadt/Germany 18–21 April 2017, ESA Space Debris Office, 2017a. a
Vierinen, J., Tveito, T., Gustavsson, B., Kesaraju, S., and Milla, M.: Radar
images of the Moon at 6-meter wavelength, Icarus, 297, 179–188,
2017b. a
Vierinen, J., Kastinen, D., Markkanen, J., Grydeland, T., Kero, J., Horstmann,
A., Hesselbach, S., Kebschull, C., Røynestad, E., and Krag, H.: 2018
Beam-park observations of space debris with the EISCAT radars, European Space Agency, ESOC, Darmstadt, Germany,
2019b. a
Zellner, B. and Gradie, J.: Minor planets and related objects. XX-Polarimetric
evidence for the albedos and compositions of 94 asteroids, Astron.
J., 81, 262–280, 1976. a
Short summary
We have applied three different methods to examine the observability, both tracking and discovery, of near-Earth objects (NEOs) by the EISCAT 3D radar system currently under construction. There are, to our knowledge, no previous studies on the expected discovery rates of NEOs using radar systems. We show that it is feasible to regularly track NEOs and mini-moons. We also show it is possible to discover new NEOs and mini-moons with EISCAT 3D, something never before done with radar systems.
We have applied three different methods to examine the observability, both tracking and...