Articles | Volume 38, issue 4
Ann. Geophys., 38, 861–879, 2020
https://doi.org/10.5194/angeo-38-861-2020

Special issue: Special Issue on the joint 19th International EISCAT Symposium...

Ann. Geophys., 38, 861–879, 2020
https://doi.org/10.5194/angeo-38-861-2020

Regular paper 15 Jul 2020

Regular paper | 15 Jul 2020

Radar observability of near-Earth objects using EISCAT 3D

Daniel Kastinen et al.

Related authors

Resolving the ambiguous direction of arrival of weak meteor radar trail echoes
Daniel Kastinen, Johan Kero, Alexander Kozlovsky, and Mark Lester
Atmos. Meas. Tech., 14, 3583–3596, https://doi.org/10.5194/amt-14-3583-2021,https://doi.org/10.5194/amt-14-3583-2021, 2021
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Balanis, C. A.: Advanced engineering electromagnetics, John Wiley & Sons, Hoboken, New Jersey, 1999. a
Banka, D., Leushacke, L., and Mehrholz, D.: Beam-park-experiment-1/2000 with TIRA, Space Debris, 2, 83–96, 2000. a
Beech, M. and Brown, P.: Fireball flickering: the case for indirect measurement of meteoroid rotation rates, Planet. Space Sci., 48, 925–932, https://doi.org/10.1016/S0032-0633(00)00058-1, 2000. a
Benner, L. A. M., Busch, M. W., Giorgini, J. D., Taylor, P. A., and Margot, J. L.: Radar Observations of Near-Earth and Main-Belt Asteroids, in: Asteroids IV, edited by: Michel, P., DeMeo, F. E., and Bottke, W. F., University of Arizona Press, Tucson, 165–182, https://doi.org/10.2458/azu_uapress_9780816532131-ch009, 2015. a
Bolin, B., Jedicke, R., Granvik, M., Brown, P., Howell, E., Nolan, M. C., Jenniskens, P., Chyba, M., Patterson, G., and Wainscoat, R.: Detecting Earth's temporarily-captured natural satellites-Minimoons, Icarus, 241, 280–297, https://doi.org/10.1016/j.icarus.2014.05.026, 2014. a, b
Short summary
We have applied three different methods to examine the observability, both tracking and discovery, of near-Earth objects (NEOs) by the EISCAT 3D radar system currently under construction. There are, to our knowledge, no previous studies on the expected discovery rates of NEOs using radar systems. We show that it is feasible to regularly track NEOs and mini-moons. We also show it is possible to discover new NEOs and mini-moons with EISCAT 3D, something never before done with radar systems.