Articles | Volume 38, issue 4
https://doi.org/10.5194/angeo-38-815-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-815-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nighttime O(1D) distributions in the mesopause region derived from SABER data
Mikhail Yu. Kulikov
CORRESPONDING AUTHOR
Institute of Applied Physics of the Russian Academy of Sciences, 46
Ulyanov Str., 603950 Nizhny Novgorod, Russia
Lobachevsky State University of Nizhni Novgorod, 23 Gagarin Avenue,
603950 Nizhny Novgorod, Russia
Mikhail V. Belikovich
Institute of Applied Physics of the Russian Academy of Sciences, 46
Ulyanov Str., 603950 Nizhny Novgorod, Russia
Related authors
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 24, 10965–10983, https://doi.org/10.5194/acp-24-10965-2024, https://doi.org/10.5194/acp-24-10965-2024, 2024
Short summary
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-154, https://doi.org/10.5194/angeo-2019-154, 2019
Manuscript not accepted for further review
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 24, 10965–10983, https://doi.org/10.5194/acp-24-10965-2024, https://doi.org/10.5194/acp-24-10965-2024, 2024
Short summary
Short summary
The assumption of chemical equilibrium is widely used to derive information about poorly measured characteristics of the mesosphere–lower thermosphere from rocket and satellite data and to study the physicochemical processes at these altitudes. In this work, we analyze the fundamental aspects of chemical equilibria of two important trace gases and discuss their possible applications.
Mikhail Yu. Kulikov, Mikhail V. Belikovich, Aleksey G. Chubarov, Svetlana O. Dementyeva, and Alexander M. Feigin
Atmos. Chem. Phys., 23, 14593–14608, https://doi.org/10.5194/acp-23-14593-2023, https://doi.org/10.5194/acp-23-14593-2023, 2023
Short summary
Short summary
In this work, the recently developed analytical criterion for determining the boundary of nighttime ozone chemical equilibrium (NOCE) in the mesopause region (80–90 km) is used (i) to study the connection of this boundary with O and H spatiotemporal variability based on 3D modeling of chemical transport and (ii) to retrieve and analyze the spatiotemporal evolution of the NOCE boundary in 2002–2021 from the SABER/TIMED data set.
Mikhail Yu. Kulikov and Mikhail V. Belikovich
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-154, https://doi.org/10.5194/angeo-2019-154, 2019
Manuscript not accepted for further review
Mikhail Y. Kulikov, Anton A. Nechaev, Mikhail V. Belikovich, Tatiana S. Ermakova, and Alexander M. Feigin
Atmos. Chem. Phys., 18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, https://doi.org/10.5194/acp-18-7453-2018, 2018
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
Cited articles
Adler-Golden, S.: Kinetic parameters for OH nightglow modeling consistent
with recent laboratory measurements, J. Geophys. Res., 102, 19969–19976,
https://doi.org/10.1029/97JA01622, 1997.
Baasandorj, M., Hall, B. D., and Burkholder, J. B.: Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14, Atmos. Chem. Phys., 12, 11753–11764, https://doi.org/10.5194/acp-12-11753-2012, 2012.
Belikovich, M. V., Kulikov, M. Y., Grygalashvyly, M., Sonnemann, G. R.,
Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.: Ozone chemical
equilibrium in the extended mesopause under the nighttime conditions, Adv.
Space Res., 61, 426–432, https://doi.org/10.1016/j.asr.2017.10.010, 2018.
Brasseur, G. P. and Solomon, S.: Aeronomy of the middle atmosphere:
Chemistry and physics of the stratosphere and mesosphere (3 Edn.),
Dordrecht, Netherlands: Springer Science and Business Media, 644 pp., 2005.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E.,
Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M.,
and Wine, P. H.: Chemical kinetics and photochemical data for use in
atmospheric studies, evaluation no. 18, JPL Publication 15–10, Pasadena,
CA: Jet Propulsion Laboratory, available at: http://jpldataeval.jpl.nasa.gov, (last access: 2 July 2020), 2015.
Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.: Implications of the O + OH reaction in hydroxyl nightglow modeling, Atmos. Chem. Phys., 13, 1–13, https://doi.org/10.5194/acp-13-1-2013, 2013.
Fytterer, T., von Savigny, C., Mlynczak, M., and Sinnhuber, M.: Model results of OH airglow considering four different wavelength regions to derive night-time atomic oxygen and atomic hydrogen in the mesopause region, Atmos. Chem. Phys., 19, 1835–1851, https://doi.org/10.5194/acp-19-1835-2019, 2019.
García-Comas, M., López-Puertas, M., Marshall, B. T.,
Wintersteiner, P. P., Funke, B., Bermejo-Pantaleón, D., Mertens,
C. J., Remsberg, E. E., Gordley, L. L., Mlynczak, M. G., and Russell III, J.
M.: Errors in Sounding of the Atmosphere using Broadband Emission Radiometry
(SABER) kinetic temperature caused by non-local-thermodynamic equilibrium
model parameters, J. Geophys. Res., 113, D24106, https://doi.org/10.1029/2008JD010105,
2008.
Ghosh, S. N. and Gupta, S. K.: Altitude distributions of and radiations
from certain oxygen and nitrogen metastable constituents, J. Geomagn.
Geoelectr., 22, 329–339, 1970.
Grygalashvyly, M., Eberhart, M., Hedin, J., Strelnikov, B., Lübken, F.-J., Rapp, M., Löhle, S., Fasoulas, S., Khaplanov, M., Gumbel, J., and Vorobeva, E.: Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment, Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, 2019.
Harris, R. D. and Adams, G. W.: Where does the O(1D) energy
go?, J. Geophys. Res., 88, 4918–4928, https://doi.org/10.1029/JA088iA06p04918, 1983.
Hiraki, Y., Tong, L., Fukunishi, H., Nanbu, K., Kasai, Y., and Ichimura, A.:
Generation of metastable oxygen atom O(1D) in sprite halos, Geophys.
Res. Lett., 31, L14105, https://doi.org/10.1029/2004GL020048, 2004.
Hofzumahaus, A., Lefer, B. L., Monks, P. S., Hall, S. R., Kylling, A., Mayer
B., Shetter, R. E., Junkermann W., Bais A., Calvert, J. G., Cantrell, C. A., Madronich, S., Edwards, G. D., Kraus, A., Müller, M., Bohn, B., Schmitt, R., Johnston, P., McKenzie, R., Frost, G. J., Griffioen, E., Krol, M., Martin T., Pfister G., Röth, E. P., Ruggaber, A., Swartz, W. H., Lloyd, S. A., and Van Weele, M.: Photolysis frequency of O3 to O(1D): Measurements and
modeling during the International Photolysis Frequency Measurement and
Modeling Intercomparison (IPMMI), J. Geophys. Res., 109, D08S90,
https://doi.org/10.1029/2003JD004333, 2004.
Kalogerakis, K. S., Smith, G. P., and Copeland, R. A.: Collisional removal
of OH(X2, v=9) by O, O2, O3, N2, and CO2, J.
Geophys. Res., 116, D20307, https://doi.org/10.1029/2011JD015734, 2011.
Kalogerakis, K. S., Matsiev, D., Sharma, R. D., and Wintersteiner, P. P.:
Resolving the mesospheric nighttime 4.3 µm emission puzzle: Laboratory
demonstration of new mechanism for OH(u) relaxation, Geophys. Res. Lett.,
43, 8835–8843, https://doi.org/10.1002/2016GL069645, 2016.
Kalogerakis, K. S.: A previously unrecognized source of the O2 atmospheric
band emission in earth's nightglow, Sci. Adv., 5, eaau9255,
https://doi.org/10.1126/sciadv.aau9255, 2019.
Kulikov, M. Y., Belikovich, M. V., Grygalashvyly, M., Sonnemann, G. R.,
Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.: Nighttime ozone chemical
equilibrium in the mesopause region, J. Geophys. Res., 123, 3228–3242,
https://doi.org/10.1002/2017JD026717, 2018.
Kulikov, M. Yu., Nechaev, A. A., Belikovich, M. V., Vorobeva, E. V.,
Grygalashvyly, M., Sonnemann, G. R., and Feigin, A. M.: Border of nighttime
ozone chemical equilibrium in the mesopause region from saber data:
implications for derivation of atomic oxygen and atomic hydrogen, Geophys.
Res. Lett., 46, 997–1004, https://doi.org/10.1029/2018GL080364, 2019.
Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J.
M., Smith, A. K., Siskind, D. E., Yee, J.-H., Mertens, C. J., Martin-Torres,
F. J., Thompson, R. E., Drob, D. P., and Gordley, L. L.: Atomic oxygen in
the mesosphere and lower thermosphere derived from SABER: Algorithm
theoretical basis and measurement uncertainty, J. Geophys. Res., 118,
5724–5735, https://doi.org/10.1002/jgrd.50401, 2013.
Mlynczak, M. G., Hunt, L. A., Russell, J. M., III, and Marshall, B. T.:
Updated SABER night atomic oxygen and implications for SABER ozone and
atomic hydrogen, Geophys. Res. Lett., 45, 5735–5741,
https://doi.org/10.1029/2018GL077377, 2018.
Nicolet, M.: The constitution and composition of the upper atmosphere, Proc.
IRE, 47, 142–147, 1959.
Panka, P. A., Kutepov, A. A., Kalogerakis, K. S., Janches, D., Russell, J. M., Rezac, L., Feofilov, A. G., Mlynczak, M. G., and Yiğit, E.: Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(v3) and OH(v) emission models, Atmos. Chem. Phys., 17, 9751–9760, https://doi.org/10.5194/acp-17-9751-2017, 2017.
Sharma, R. D., Wintersteiner, P. P., and Kalogerakis, K. S.: A new mechanism
for OH vibrational relaxation leading to enhanced CO2 emissions in the
nocturnal mesosphere, Geophys. Res. Lett., 42, 4639–4647,
https://doi.org/10.1002/2015GL063724, 2015.
Shepherd, M., Shepherd, G., and Codrescu, M.: Perturbations of O(1D)
VER, temperature, winds, atomic oxygen, and TEC at high southern latitudes,
J. Geophys. Res., 124, 4773–4795, https://doi.org/10.1029/2019JA026480, 2019.
Shimazaki, T. and Laird, A. R.: A model calculation of the diurnal
variation in minor neutral constituents in the mesosphere and lower
thermosphere including transport effects, J. Geophys. Res., 75, 3221–3235,
https://doi.org/10.1029/JA075i016p03221, 1970.
Strelnikov, B., Eberhart, M., Friedrich, M., Hedin, J., Khaplanov, M., Baumgarten, G., Williams, B. P., Staszak, T., Asmus, H., Strelnikova, I., Latteck, R., Grygalashvyly, M., Lübken, F.-J., Höffner, J., Wörl, R., Gumbel, J., Löhle, S., Fasoulas, S., Rapp, M., Barjatya, A., Taylor, M. J., and Pautet, P.-D.: Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project, Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, 2019.
Taniguchi, N., Hayashida, S., Takahashi, K., and Matsumi, Y.: Sensitivity studies of the recent new data on O(1D) quantum yields in O3 Hartley band photolysis in the stratosphere, Atmos. Chem. Phys., 3, 1293–1300, https://doi.org/10.5194/acp-3-1293-2003, 2003.
Varandas, A. J. C.: Reactive and non-reactive vibrational quenching in OCOH
collisions, Chem. Phys. Lett., 396, 182–190,
https://doi.org/10.1016/j.cplett.2004.08.023, 2004.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.: Using TIMED/SABER nightglow
observations to investigate hydroxyl emission mechanisms in the mesopause
region, J. Geophys. Res., 117, D02301, https://doi.org/10.1029/2011JD016342, 2012.