Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-765-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-765-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low-altitude frequency-banded equatorial emissions observed below the electron cyclotron frequency
Mohammed Y. Boudjada
CORRESPONDING AUTHOR
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Patrick H. M. Galopeau
LATMOS-CNRS, Université Versailles Saint-Quentin-en-Yvelines, Guyancourt, France
Sami Sawas
Institute of Communications and Wave Propagation, Graz University of Technology, Graz, Austria
Valery Denisenko
Institute of Computational Modelling, Russian Academy of Sciences, Krasnoyarsk, Russia
Siberian Federal University, Krasnoyarsk, Russia
Konrad Schwingenschuh
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Helmut Lammer
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Hans U. Eichelberger
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Werner Magnes
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Bruno Besser
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, and Konrad Schwingenschuh
Geosci. Instrum. Method. Data Syst., 12, 231–237, https://doi.org/10.5194/gi-12-231-2023, https://doi.org/10.5194/gi-12-231-2023, 2023
Short summary
Short summary
We present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka).
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023, https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Short summary
We investigate the variation of the electric power density linked to VLF signals emitted by NWC transmitter. The power density measurements were detected by the Electric Field Detector (EFD) instrument onboard CSES satellite above NWC station and its conjugate region (CR). The beam is subject to disturbances and modulations in CR. Above the NWC station, the beam can be considered as a hollow cone with inconsistency dependence of the half-opening angle on the electric power density.
Mohammed Y. Boudjada, Ahmed Abou el-Fadl, Patrick H. M. Galopeau, Eimad Al-Haddad, and Helmut Lammer
Adv. Radio Sci., 18, 83–87, https://doi.org/10.5194/ars-18-83-2020, https://doi.org/10.5194/ars-18-83-2020, 2020
Short summary
Short summary
We investigate the solar Type III radio bursts recorded at about 10 AU by Cassini spacecraft. More than 300 bursts have been recorded by the RPWS experiment in the time interval from 01 Jan. 2008 to 31 Dec. 2014. We show that the solar Type III occurrence is mainly depending on the solar activity and also exhibits maxima and minima of detection. The source location of such solar bursts is the interplanetary medium because the dominant emission appears at frequency lower than 2.3 MHz.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
M. Y. Boudjada, P. H. M. Galopeau, M. Maksimovic, and H. O. Rucker
Adv. Radio Sci., 12, 167–170, https://doi.org/10.5194/ars-12-167-2014, https://doi.org/10.5194/ars-12-167-2014, 2014
M. Y. Boudjada, P. H. M. Galopeau, S. Sawas, and H. Lammer
Ann. Geophys., 32, 1119–1128, https://doi.org/10.5194/angeo-32-1119-2014, https://doi.org/10.5194/angeo-32-1119-2014, 2014
Christoph Amtmann, Andreas Pollinger, Michaela Ellmeier, Michele Dougherty, Patrick Brown, Roland Lammegger, Alexander Betzler, Martín Agú, Christian Hagen, Irmgard Jernej, Josef Wilfinger, Richard Baughen, Alex Strickland, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 13, 177–191, https://doi.org/10.5194/gi-13-177-2024, https://doi.org/10.5194/gi-13-177-2024, 2024
Short summary
Short summary
The paper discusses the accuracy of the scalar magnetometer on board the scientific satellite mission
Jupiter Icy Moons Explorerof the European Space Agency. A novel method is described which utilises experiments, performed with a coil system in a geomagnetic observatory, and a mathematical data processing approach to separate the systematic errors of the coil system from the systematic error of the magnetometer. With this, the paper shows that the instrument’s accuracy is below 0.2 nT (1σ).
Patrick H. M. Galopeau, Ashanthi S. Maxworth, Mohammed Y. Boudjada, Hans U. Eichelberger, Mustapha Meftah, Pier F. Biagi, and Konrad Schwingenschuh
Geosci. Instrum. Method. Data Syst., 12, 231–237, https://doi.org/10.5194/gi-12-231-2023, https://doi.org/10.5194/gi-12-231-2023, 2023
Short summary
Short summary
We present the implementation of a VLF/LF network to search for earthquake electromagnetic precursors. The proposed system will deliver a steady stream of real-time amplitude and phase measurements as well as a daily recording VLF/LF data set. The first implementation of the system was done in Graz, Austria. The second one will be in Guyancourt (France), with a third one in Réunion (France) and a fourth one in Moratuwa (Sri Lanka).
Mohammed Y. Boudjada, Hans U. Eichelberger, Emad Al-Haddad, Werner Magnes, Patrick H. M. Galopeau, Xuemin Zhang, Andreas Pollinger, and Helmut Lammer
Adv. Radio Sci., 20, 77–84, https://doi.org/10.5194/ars-20-77-2023, https://doi.org/10.5194/ars-20-77-2023, 2023
Short summary
Short summary
We investigate the variation of the electric power density linked to VLF signals emitted by NWC transmitter. The power density measurements were detected by the Electric Field Detector (EFD) instrument onboard CSES satellite above NWC station and its conjugate region (CR). The beam is subject to disturbances and modulations in CR. Above the NWC station, the beam can be considered as a hollow cone with inconsistency dependence of the half-opening angle on the electric power density.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Mohammed Y. Boudjada, Ahmed Abou el-Fadl, Patrick H. M. Galopeau, Eimad Al-Haddad, and Helmut Lammer
Adv. Radio Sci., 18, 83–87, https://doi.org/10.5194/ars-18-83-2020, https://doi.org/10.5194/ars-18-83-2020, 2020
Short summary
Short summary
We investigate the solar Type III radio bursts recorded at about 10 AU by Cassini spacecraft. More than 300 bursts have been recorded by the RPWS experiment in the time interval from 01 Jan. 2008 to 31 Dec. 2014. We show that the solar Type III occurrence is mainly depending on the solar activity and also exhibits maxima and minima of detection. The source location of such solar bursts is the interplanetary medium because the dominant emission appears at frequency lower than 2.3 MHz.
Andreas Pollinger, Christoph Amtmann, Alexander Betzler, Bingjun Cheng, Michaela Ellmeier, Christian Hagen, Irmgard Jernej, Roland Lammegger, Bin Zhou, and Werner Magnes
Geosci. Instrum. Method. Data Syst., 9, 275–291, https://doi.org/10.5194/gi-9-275-2020, https://doi.org/10.5194/gi-9-275-2020, 2020
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
Ferdinand Plaschke, Hans-Ulrich Auster, David Fischer, Karl-Heinz Fornaçon, Werner Magnes, Ingo Richter, Dragos Constantinescu, and Yasuhito Narita
Geosci. Instrum. Method. Data Syst., 8, 63–76, https://doi.org/10.5194/gi-8-63-2019, https://doi.org/10.5194/gi-8-63-2019, 2019
Short summary
Short summary
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate systems before it is usable for scientific applications. This conversion is defined by 12 calibration parameters, 8 of which are more easily determined in flight if the spacecraft is spinning. We present theory and advanced algorithms to determine these eight parameters. They take into account the physical magnetometer and spacecraft behavior, making them superior to previously published algorithms.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
A. Rozhnoi, M. Solovieva, V. Fedun, M. Hayakawa, K. Schwingenschuh, and B. Levin
Ann. Geophys., 32, 1455–1462, https://doi.org/10.5194/angeo-32-1455-2014, https://doi.org/10.5194/angeo-32-1455-2014, 2014
M. Y. Boudjada, P. H. M. Galopeau, M. Maksimovic, and H. O. Rucker
Adv. Radio Sci., 12, 167–170, https://doi.org/10.5194/ars-12-167-2014, https://doi.org/10.5194/ars-12-167-2014, 2014
S. Krauss, M. Pfleger, and H. Lammer
Ann. Geophys., 32, 1305–1309, https://doi.org/10.5194/angeo-32-1305-2014, https://doi.org/10.5194/angeo-32-1305-2014, 2014
M. Y. Boudjada, P. H. M. Galopeau, S. Sawas, and H. Lammer
Ann. Geophys., 32, 1119–1128, https://doi.org/10.5194/angeo-32-1119-2014, https://doi.org/10.5194/angeo-32-1119-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Plasmasphere
Width of plasmaspheric plumes related to the level of geomagnetic storm intensity
A new perspective and explanation for the formation of plasmaspheric shoulder structures
Zhanrong Yang, Haimeng Li, Zhigang Yuan, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 673–685, https://doi.org/10.5194/angeo-40-673-2022, https://doi.org/10.5194/angeo-40-673-2022, 2022
Short summary
Short summary
From the statistical analysis of potential plasmaspheric plume, we find that there is almost no correlation between plume width and the level of geomagnetic storm intensity. However, for plumes in the recovery phase after improved sifting, there is a negative correlation between the plume width and absolute value of minimum Dst during the storm. We suggest that the plasmaspheric particles may escape quickly during intense storms, causing plume to be relatively narrow during the recovery phase.
Hua Zhang, Guangshuai Peng, Chao Shen, and Yewen Wu
Ann. Geophys., 39, 701–707, https://doi.org/10.5194/angeo-39-701-2021, https://doi.org/10.5194/angeo-39-701-2021, 2021
Short summary
Short summary
In this paper, we propose a new explanation for shoulder-like formations based on the test particle model. The simulation reproduced three shoulders in a substorm case. The physical explanation of shoulder formation is not yet understood. The paper suggests that the physical mechanism of shoulder formation is the result of plasma extrusion in the predawn sector, caused by the outer plasmasphere drifting radially outward and rotating faster.
Cited articles
An, X., Bortnik, J., Van Compernolle, B., Decyk, V., and Thorne, R.: Electrostatic and whistler instabilities excited by an electron beam, Phys. Plasmas, 24, 072116, https://doi.org/10.1063/1.4986511, 2017. a
Bell, T. F. and Ngo, H. D.: Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities, J. Geophys. Res., 95, 149–172, 1990. a
Berthelier, J. J., Godefroy, M., Leblanc, F., Malingre, M., Menvielle, M., Lagoutte, D., Brochot, J. Y., Colin, F., Elie, F., Legendre, C., Zamora, P., Benoist, D., Chapuis, Y., Artru, J., and Pfaff, R.: ICE, the electric field experiment on DEMETER, Planet. Space Sci., 54, 456–471, 2006. a
Boudjada, M. Y., Biagi, P. F., Al-Haddad, E., Galopeau, P. H. M., Besser, B., Wolbang, D., Prattes, G., Eichelberger, H., Stangl, G., Parrot, M., and Schwingenschuh, K.: Reception conditions of low frequency (LF) transmitter signals onboard DEMETER micro-satellite, Phys. Chem. Earth, 102, 70–79, 2017. a
Brown, L. W.: The galactic radio spectrum between 130 kHz and 2600 kHz,
Astrophys. J., 180, 359–370, 1973. a
Burch, J. L.: IMAGE mission overview, Space Sci. Rev., 91, 1–14, 2000. a
Carpenter, D. L., Bell, T. F., Inan, U. S., Benson, R. F., Sonwalkar, V. S., Reinisch, B. W., and Gallagher, D. L.: Z-mode sounding within propagation “cavities” and other inner magnetospheric regions by the RPI instrument on the IMAGE satellite, J. Geophys. Res., 108, 1421, https://doi.org/10.1029/2003JA010025, 2003. a, b, c, d
Darrouzet, F., Gallagher, D. L., André, N., Carpenter, D. L., Dandouras, I., Décréau, P. M. E., De Keyser, J., Denton, R. E., Foster, J. C., Goldstein, J., Moldwin, M. B., Reinisch, B. W., Sandel, B. R., and Tu, J.: Plasmaspheric Density Structures and Dynamics: Properties Observed by the CLUSTER and IMAGE Missions, Space Sci. Rev., 145, 55–106, 2009. a
Décréau, P. M. E., Ducoin, C., Le Rouzic, G., Randriamboarison, O., Rauch, J.-L., Trotignon, J.-G., Vallières, X., Canu, P., Darrouzet, F., Gough, M. P., Buckley, A. M., and Carozzi, T. D.: Observation of continuum radiations from the Cluster fleet: first results from direction finding, Ann. Geophys., 22, 2607–2624, https://doi.org/10.5194/angeo-22-2607-2004, 2004. a, b
Décréau, P. M. E., Fergeau, P., Krasnoselskikh, V., Le Guirriec, E., Lévêque, M., Martin, Ph., Randriamboarison, O., Rauch, J. L., Sené, F. X., Séran, H. C., Trotignon, J. G., Canu, P., Cornilleau, N., de Féraudy, H., Alleyne, H., Yearby, K., Mëgensen, P. B., Gustafsson, G., André, M., Gurnett, D. C., Darrouzet, F., Lemaire, J., Harvey, C. C., Travnicek, P., and Whisper experimenters (Table 1): Early results from the Whisper instrument on Cluster: an overview, Ann. Geophys., 19, 1241–1258, https://doi.org/10.5194/angeo-19-1241-2001, 2001. a
El-Lemdani Mazouz, F., Rauch, J. L., Décréau, P. M. E., Trotignon, J. G., Vallières, X., Darrouzet, F., Canu, P., and Suraud, X.: Wave emissions at half electron gyroharmonics in the equatorial plasmasphere region: CLUSTER observations and statistics, Adv. Space Res., 43, 253–264, 2009. a
Grimald, S. and Santolik, O.: Possible wave modes of wideband nonthermal
continuum radiation in its source region, J. Geophys. Res., 115, A06209, https://doi.org/10.1029/2009JA014997, 2010. a
Grimald, S., Décréau, P. M. E., Canu, P., Rochel, A., and Vallières, X.: Medium latitude sources of plasmaspheric non thermal continuum radiations observed close to harmonics of the electron gyrofrequency, J. Geophys. Res., 113, A11217, https://doi.org/10.1029/2008JA013290, 2008. a
Grimald, S., El-Lemdani Mazouz, F., Foullon, C., Décréau, P. M. E., Boardsen, S. A., and Vallières, X.: Study of non-thermal continuum patches: wave propagation and plasmapause study, J. Geophys. Res., 116, A07219, https://doi.org/10.1029/2011JA016476, 2011. a
Gurnett, D. A.: The Earth as a radio source: The nonthermal continuum, J. Geophys. Res., 80, 2751–2763, 1975. a
Gurnett, D. A. and Shaw, R. A.: Electromagnetic radiation trapped in the magnetosphere above the plasma frequency, J. Geophys. Res., 78, 8136–8148, 1973. a
Gurnett, D. A., Shawhan, S. D., and Shaw, R. R.: Auroral hiss, Z-mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations, J. Geophys. Res., 88, 329–340, https://doi.org/10.1029/JA088iA01p00329, 1983. a
Hashimoto, K., Green, J. L., Anderson, R. R., and Matsumoto, H.: Review of kilometric continuum, in: Geospace Electromagnetic Waves and Radiation, Lect. Not. in Phys., edited by: LaBelle, J. W. and Treumann, R. A., Springer, New York, 687, 37–54, 2006. a
Jones, D.: Source of terrestrial nonthermal radiation, Nature, 260, 686–689, 1976. a
Kuril'chik, V. N., Boudjada, M. Y., and Rucker, H. O.: INTERBALL-1 observations of the plasmaspheric emissions related to terrestrial “continuum” radio emissions, in: Planetary Radio Emissions V, edited by: Rucker, H. O., Kaiser, M. L., and Leblanc, Y., Austrian Academy of Sciences Press, Vienna, 325–335, 2001. a
Kuril'chik, V. N., Boudjada, M. Y., Rucker, H. O., and Kopaeva, I. F.: Observations of Electromagnetic Emissions inside the Earth's Plasmasphere from the INTERBALL-1 Satellite, Cosmic Res., 45, 455–460, 2007. a
Kurth, W. S., Gurnett, D. A., and Anderson, R. R.: Escaping nonthermal continuum radiation, J. Geophys. Res., 86, 5519–5531, 1981. a
Li, J., Bortnik, J., An, X., Li, W., Thorne, R. M., Zhou, M., Kurth, W. S., Hospodarsky, G. B., Funsten, H. O., and Spence, H. E.: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts, Geophys. Res. Lett., 44, 11713–11721, 2017. a
Parrot, M. and Berthelier, J.-J.: AKR-like emissions observed at low altitude by the DEMETER satellite, J. Geophys. Res., 117, A10314, https://doi.org/10.1029/2012JA017937, 2012. a
Parrot, M., Inan, U. S., Lehtinen, N. G., and Pincon, J. L.: Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters, J. Geophys. Res., 114, A12318, https://doi.org/10.1029/2009JA014598, 2009. a
Sandel, B. R., Goldstein, J., Gallagher, D. L., and Spasojevic, M.: Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere, Space Sci. Rev., 109, 25–46, 2003. a
Sonwalkar, V. S., Carpenter, D. L., Bell, T. F., Spasojevic, M., Inan, U. S., Li, J., Chen, X., Venkatasubramanian, A., Harikumar, J., Benson, R. F., Taylor, W. W. L., and Reinisch, B. W.: Diagnostics of magnetospheric electron density and irregularities at altitudes <5000 km using whistler and Z mode echoes from radio sounding on the IMAGE satellite, J. Geophys. Res., 109, A11212, https://doi.org/10.1029/2004JA010471, 2004. a, b
Vartanyan, A., Milikh, G. M., Eliasson, B., Najmi, A. C., Parrot, M., and Papadopoulos, K.: Generation of whistler waves by continuous HF heating of the upper ionosphere, Radio Sci., 51, 1188–1198, 2016. a
Short summary
In this paper, we report on observations of frequency-banded wave emissions by ICE (Instrument Champ Électrique) on board DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions). We distinguish two components: positive and negative frequency drift rates and multiple spaced frequency bands near the magnetic equatorial plane. We show and discuss the non-free-space DEMETER frequency-banded emissions and the free-space terrestrial kilometric radiation.
In this paper, we report on observations of frequency-banded wave emissions by ICE (Instrument...