Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-749-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relation between the asymmetric ring current effect and the anti-sunward auroral currents, as deduced from CHAMP observations
GFZ, German Research Centre for Geosciences, Section 2.3, Geomagnetism,
14473 Potsdam, Germany
Yun-Liang Zhou
Department of Space Physics, School of Electronic Information, Wuhan
University, 430072 Wuhan, China
Related authors
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Balázs Heilig and Hermann Lühr
Ann. Geophys., 36, 595–607, https://doi.org/10.5194/angeo-36-595-2018, https://doi.org/10.5194/angeo-36-595-2018, 2018
Short summary
Short summary
This paper presents a statistical study of the equatorward boundary of small-scale field-aligned currents (SSFACs) as observed by ESA's Swarm satellites and investigates the relation between this boundary and NASA’s Van Allen probe observed plasmapause (PP). It is found that the two boundaries are closely coincident in the midnight LT sector, where the new PP is formed. Our results point to the role of SSFACs in the creation of the PP and offer a unique tool to monitor PP dynamics.
Tao Huang, Hermann Lühr, and Hui Wang
Ann. Geophys., 35, 1249–1268, https://doi.org/10.5194/angeo-35-1249-2017, https://doi.org/10.5194/angeo-35-1249-2017, 2017
Short summary
Short summary
This is the first study considering ionospheric currents (both field-aligned current and Hall current) derived from high-resolution magnetic field data of the Swarm constellation in both hemispheres. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
Hermann Lühr, Tao Huang, Simon Wing, Guram Kervalishvili, Jan Rauberg, and Haje Korth
Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, https://doi.org/10.5194/angeo-34-901-2016, 2016
Short summary
Short summary
ESA's constellation mission Swarm makes it possible for the first time to determine field-aligned currents (FACs) reliably in the ionosphere. FACs are able to transport energy from the solar wind to the Earth and heat the upper atmosphere. Here we investigate FAC structures that have been missed by previous satellite missions. Most of them are found poleward of the northern light zone. The energy sources seem to be located on the nightside of Earth about 100 000 km away.
Yun-Liang Zhou, Li Wang, Chao Xiong, Hermann Lühr, and Shu-Ying Ma
Ann. Geophys., 34, 463–472, https://doi.org/10.5194/angeo-34-463-2016, https://doi.org/10.5194/angeo-34-463-2016, 2016
Short summary
Short summary
The solar activity dependence of nonmigrating tides in electron density at low and middle latitudes observed by CHAMP and GRACE are investigated. The absolute amplitudes of DE3 at low latitudes as well as DE1, D0 and DW2 at middle latitudes are highly related to the solar activity, while their relative amplitudes show little dependence on the solar activity. A clear modulation by the QBO is found in the relative amplitudes of DE3 at low latitudes.
J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill
Ann. Geophys., 33, 829–835, https://doi.org/10.5194/angeo-33-829-2015, https://doi.org/10.5194/angeo-33-829-2015, 2015
Short summary
Short summary
Though high-latitude plasma convection has been monitored with a number of methods, more independent measurements are still warranted. In this study we introduce an automatic method to estimate along-track plasma drift velocity in the high-latitude ionosphere using the Swarm constellation. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network (SuperDARN) data. The method can be generalized to any satellite constellations in pearls-on-a-string configurations.
T. A. Siddiqui, H. Lühr, C. Stolle, and J. Park
Ann. Geophys., 33, 235–243, https://doi.org/10.5194/angeo-33-235-2015, https://doi.org/10.5194/angeo-33-235-2015, 2015
Short summary
Short summary
This paper presents the long-term observations of lunar tidal signatures in the equatorial electrojet (EEJ) and their relation to stratospheric sudden warming (SSW) events. We propose an approach to estimate the occurrence of SSW events before their direct observations (before 1952) from the magnetic field observations at Huancayo.
C. Xiong, Y.-L. Zhou, H. Lühr, and S.-Y. Ma
Ann. Geophys., 33, 185–196, https://doi.org/10.5194/angeo-33-185-2015, https://doi.org/10.5194/angeo-33-185-2015, 2015
J. Park, H. Lühr, and M. Noja
Ann. Geophys., 33, 129–135, https://doi.org/10.5194/angeo-33-129-2015, https://doi.org/10.5194/angeo-33-129-2015, 2015
Short summary
Short summary
Total electron content (TEC) between low-Earth-orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain three-dimensional morphology of equatorial plasma bubbles (EPBs). TEC gradient observed along the LEO track is strongest when the corresponding GNSS satellite is located equatorward and westward of the LEO satellite. This anisotropy supports the idea that EPBs have three-dimensional shell structures.
K. Schlegel and H. Lühr
Hist. Geo Space. Sci., 5, 149–154, https://doi.org/10.5194/hgss-5-149-2014, https://doi.org/10.5194/hgss-5-149-2014, 2014
C. Xiong, H. Lühr, H. Wang, and M. G. Johnsen
Ann. Geophys., 32, 609–622, https://doi.org/10.5194/angeo-32-609-2014, https://doi.org/10.5194/angeo-32-609-2014, 2014
C. Xiong and H. Lühr
Ann. Geophys., 32, 623–631, https://doi.org/10.5194/angeo-32-623-2014, https://doi.org/10.5194/angeo-32-623-2014, 2014
H. Wang, H. Lühr, A. Ridley, and T. Huang
Ann. Geophys., 32, 533–542, https://doi.org/10.5194/angeo-32-533-2014, https://doi.org/10.5194/angeo-32-533-2014, 2014
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 32, 249–261, https://doi.org/10.5194/angeo-32-249-2014, https://doi.org/10.5194/angeo-32-249-2014, 2014
H. Wang and H. Lühr
Ann. Geophys., 31, 1521–1534, https://doi.org/10.5194/angeo-31-1521-2013, https://doi.org/10.5194/angeo-31-1521-2013, 2013
J. Park, H. Lühr, and J. Rauberg
Ann. Geophys., 31, 1507–1520, https://doi.org/10.5194/angeo-31-1507-2013, https://doi.org/10.5194/angeo-31-1507-2013, 2013
H. Lühr and C. Manoj
Ann. Geophys., 31, 1315–1331, https://doi.org/10.5194/angeo-31-1315-2013, https://doi.org/10.5194/angeo-31-1315-2013, 2013
C. Xiong and H. Lühr
Ann. Geophys., 31, 1115–1130, https://doi.org/10.5194/angeo-31-1115-2013, https://doi.org/10.5194/angeo-31-1115-2013, 2013
J. Park and H. Lühr
Ann. Geophys., 31, 1035–1044, https://doi.org/10.5194/angeo-31-1035-2013, https://doi.org/10.5194/angeo-31-1035-2013, 2013
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, https://doi.org/10.5194/angeo-31-541-2013, 2013
B. Heilig and H. Lühr
Ann. Geophys., 31, 529–539, https://doi.org/10.5194/angeo-31-529-2013, https://doi.org/10.5194/angeo-31-529-2013, 2013
H. Lühr, F. Yin, and R. Bock
J. Sens. Sens. Syst., 2, 9–17, https://doi.org/10.5194/jsss-2-9-2013, https://doi.org/10.5194/jsss-2-9-2013, 2013
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018, https://doi.org/10.5194/angeo-36-1141-2018, 2018
Balázs Heilig and Hermann Lühr
Ann. Geophys., 36, 595–607, https://doi.org/10.5194/angeo-36-595-2018, https://doi.org/10.5194/angeo-36-595-2018, 2018
Short summary
Short summary
This paper presents a statistical study of the equatorward boundary of small-scale field-aligned currents (SSFACs) as observed by ESA's Swarm satellites and investigates the relation between this boundary and NASA’s Van Allen probe observed plasmapause (PP). It is found that the two boundaries are closely coincident in the midnight LT sector, where the new PP is formed. Our results point to the role of SSFACs in the creation of the PP and offer a unique tool to monitor PP dynamics.
Tao Huang, Hermann Lühr, and Hui Wang
Ann. Geophys., 35, 1249–1268, https://doi.org/10.5194/angeo-35-1249-2017, https://doi.org/10.5194/angeo-35-1249-2017, 2017
Short summary
Short summary
This is the first study considering ionospheric currents (both field-aligned current and Hall current) derived from high-resolution magnetic field data of the Swarm constellation in both hemispheres. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
Hermann Lühr, Tao Huang, Simon Wing, Guram Kervalishvili, Jan Rauberg, and Haje Korth
Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, https://doi.org/10.5194/angeo-34-901-2016, 2016
Short summary
Short summary
ESA's constellation mission Swarm makes it possible for the first time to determine field-aligned currents (FACs) reliably in the ionosphere. FACs are able to transport energy from the solar wind to the Earth and heat the upper atmosphere. Here we investigate FAC structures that have been missed by previous satellite missions. Most of them are found poleward of the northern light zone. The energy sources seem to be located on the nightside of Earth about 100 000 km away.
Yun-Liang Zhou, Li Wang, Chao Xiong, Hermann Lühr, and Shu-Ying Ma
Ann. Geophys., 34, 463–472, https://doi.org/10.5194/angeo-34-463-2016, https://doi.org/10.5194/angeo-34-463-2016, 2016
Short summary
Short summary
The solar activity dependence of nonmigrating tides in electron density at low and middle latitudes observed by CHAMP and GRACE are investigated. The absolute amplitudes of DE3 at low latitudes as well as DE1, D0 and DW2 at middle latitudes are highly related to the solar activity, while their relative amplitudes show little dependence on the solar activity. A clear modulation by the QBO is found in the relative amplitudes of DE3 at low latitudes.
J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill
Ann. Geophys., 33, 829–835, https://doi.org/10.5194/angeo-33-829-2015, https://doi.org/10.5194/angeo-33-829-2015, 2015
Short summary
Short summary
Though high-latitude plasma convection has been monitored with a number of methods, more independent measurements are still warranted. In this study we introduce an automatic method to estimate along-track plasma drift velocity in the high-latitude ionosphere using the Swarm constellation. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network (SuperDARN) data. The method can be generalized to any satellite constellations in pearls-on-a-string configurations.
T. A. Siddiqui, H. Lühr, C. Stolle, and J. Park
Ann. Geophys., 33, 235–243, https://doi.org/10.5194/angeo-33-235-2015, https://doi.org/10.5194/angeo-33-235-2015, 2015
Short summary
Short summary
This paper presents the long-term observations of lunar tidal signatures in the equatorial electrojet (EEJ) and their relation to stratospheric sudden warming (SSW) events. We propose an approach to estimate the occurrence of SSW events before their direct observations (before 1952) from the magnetic field observations at Huancayo.
C. Xiong, Y.-L. Zhou, H. Lühr, and S.-Y. Ma
Ann. Geophys., 33, 185–196, https://doi.org/10.5194/angeo-33-185-2015, https://doi.org/10.5194/angeo-33-185-2015, 2015
J. Park, H. Lühr, and M. Noja
Ann. Geophys., 33, 129–135, https://doi.org/10.5194/angeo-33-129-2015, https://doi.org/10.5194/angeo-33-129-2015, 2015
Short summary
Short summary
Total electron content (TEC) between low-Earth-orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain three-dimensional morphology of equatorial plasma bubbles (EPBs). TEC gradient observed along the LEO track is strongest when the corresponding GNSS satellite is located equatorward and westward of the LEO satellite. This anisotropy supports the idea that EPBs have three-dimensional shell structures.
K. Schlegel and H. Lühr
Hist. Geo Space. Sci., 5, 149–154, https://doi.org/10.5194/hgss-5-149-2014, https://doi.org/10.5194/hgss-5-149-2014, 2014
C. Xiong, H. Lühr, H. Wang, and M. G. Johnsen
Ann. Geophys., 32, 609–622, https://doi.org/10.5194/angeo-32-609-2014, https://doi.org/10.5194/angeo-32-609-2014, 2014
C. Xiong and H. Lühr
Ann. Geophys., 32, 623–631, https://doi.org/10.5194/angeo-32-623-2014, https://doi.org/10.5194/angeo-32-623-2014, 2014
H. Wang, H. Lühr, A. Ridley, and T. Huang
Ann. Geophys., 32, 533–542, https://doi.org/10.5194/angeo-32-533-2014, https://doi.org/10.5194/angeo-32-533-2014, 2014
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 32, 249–261, https://doi.org/10.5194/angeo-32-249-2014, https://doi.org/10.5194/angeo-32-249-2014, 2014
H. Wang and H. Lühr
Ann. Geophys., 31, 1521–1534, https://doi.org/10.5194/angeo-31-1521-2013, https://doi.org/10.5194/angeo-31-1521-2013, 2013
J. Park, H. Lühr, and J. Rauberg
Ann. Geophys., 31, 1507–1520, https://doi.org/10.5194/angeo-31-1507-2013, https://doi.org/10.5194/angeo-31-1507-2013, 2013
H. Lühr and C. Manoj
Ann. Geophys., 31, 1315–1331, https://doi.org/10.5194/angeo-31-1315-2013, https://doi.org/10.5194/angeo-31-1315-2013, 2013
C. Xiong and H. Lühr
Ann. Geophys., 31, 1115–1130, https://doi.org/10.5194/angeo-31-1115-2013, https://doi.org/10.5194/angeo-31-1115-2013, 2013
J. Park and H. Lühr
Ann. Geophys., 31, 1035–1044, https://doi.org/10.5194/angeo-31-1035-2013, https://doi.org/10.5194/angeo-31-1035-2013, 2013
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, https://doi.org/10.5194/angeo-31-541-2013, 2013
B. Heilig and H. Lühr
Ann. Geophys., 31, 529–539, https://doi.org/10.5194/angeo-31-529-2013, https://doi.org/10.5194/angeo-31-529-2013, 2013
H. Lühr, F. Yin, and R. Bock
J. Sens. Sens. Syst., 2, 9–17, https://doi.org/10.5194/jsss-2-9-2013, https://doi.org/10.5194/jsss-2-9-2013, 2013
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetosphere–ionosphere interactions
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations
Ionospheric plasma flows associated with the formation of the distorted nightside end of a transpolar arc
Estimating the fate of oxygen ion outflow from the high-altitude cusp
Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Motoharu Nowada, Adrian Grocott, and Quan-Qi Shi
Ann. Geophys., 40, 299–314, https://doi.org/10.5194/angeo-40-299-2022, https://doi.org/10.5194/angeo-40-299-2022, 2022
Short summary
Short summary
We report that the ionospheric plasma flow patterns associated with the J-shaped transpolar arc (a type of nightside distorted TPA), detected by the SuperDARN radar, reveal the formation process of the nightside distortion of a TPA. Equatorward flows at the TPA growth point were observed flowing out of the polar cap and then turning toward the pre-midnight main auroral oval along the TPA nightside distortion. These ionospheric flow patterns would cause the distortion at the TPA nightside end.
Patrik Krcelic, Stein Haaland, Lukas Maes, Rikard Slapak, and Audrey Schillings
Ann. Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, https://doi.org/10.5194/angeo-38-491-2020, 2020
Short summary
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Cited articles
Bythrow, P. F., Heelis, R. A., Hanson, W. B., Power, R. A., and Hoffman, R.:
Observational evidence for a boundary layer source of dayside Region 1
field-aligned currents, J. Geophys. Res., 86, 5577–5589, 1981.
CIRES: POMME-6CE2 geomagnetic field model, available at: http://geomag.colorado.edu/pomme-6-magnetic-model-of-the-earth.html, last access: 18 June 2020.
Crooker, N. U. and Siscoe, G. L.: Birkeland Currents as the Cause of the
Low-Latitude Asymmetric Disturbance Field, J. Geophys. Res., 86,
11201–11210, 1981.
Fukushima, N.: Generalized theorem for no ground magnetic effect of vertical
currents connected with Pedersen currents in the uniform-conductivity
ionosphere, Rept. Ionos. Space Res. Japan, 30, 35–40, 1976.
Guo, J., Liu, H., Feng, X., Pulkkinen, T. I., Tanskanen, E. I., Liu, C.,
Zhong, D., and Wang, Y.: MLT and seasonal dependence of auroral electrojets:
IMAGE magnetometer network observations, J. Geophys. Res.-Space,
119, 3179–3188, https://doi.org/10.1002/2014JA019843, 2014.
INTERMAGNET: Ground-based geomagnetic field data, available at: http://www.intermagnet.org, last access: 18 June 2020.
Iyemori, T.: Formation of the storm-time ring current and the Dst field:
Some recent topics, in: Magnetospheric Current Systems, Geophys. Monogr. Ser., edited by:
Ohtani, S., Fujii, R., Hesse, M., and Lysak, R., AGU, Washington, D.C., 118, 331–338, https://doi.org/10.1029/GM118p0331, 2000.
Le, G., Burke, W. J., Pfaff, R. F., Freudenreich, H., Maus, S., and
Lühr, H.: C/NOFS measurements of magnetic perturbations
in the low-latitude ionosphere during magnetic storms, J. Geophys. Res.-Space, 116, A12230, https://doi.org/10.1029/2011JA017026, 2011.
Love, J. J. and Gannon, J. L.: Revised Dst and the epicycles of magnetic disturbance: 1958–2007, Ann. Geophys., 27, 3101–3131, https://doi.org/10.5194/angeo-27-3101-2009, 2009.
Lühr, H., Rentz, S., Ritter, P., Liu, H., and Häusler, K.: Average thermospheric wind patterns over the polar regions, as observed by CHAMP, Ann. Geophys., 25, 1093–1101, https://doi.org/10.5194/angeo-25-1093-2007, 2007.
Lühr, H., Xiong, C., Olsen, N., and Le, G.: Near-Earth magnetic field
effects of large-scale magnetospheric currents, Space Sci. Rev., 206, 521–545,
https://doi.org/10.1007/s11214-016-0267-y, 2017.
Lundin, R.: On the magnetospheric boundary layer and solar wind energy
transfer into the magnetosphere, Space Sci. Rev., 48, 263–320, 1988.
Maus, S., Manoj, C., Rauberg, J., Michaelis, I., and Lühr, H.: NOAA/NGDC
candidate models for the 11th generation International Geomagnetic Reference
Field and the concurrent release of the 6th generation POMME magnetic model,
Earth Planets Space, 62, 729–735, 2010.
Mursula, K. and Karinen, A.: Explaining and correcting the excessive
semiannual variation in the Dst index, Geophys. Res. Lett., 32, L14107,
https://doi.org/10.1029/2005GL023132, 2005.
Nakano, S. and Iyemori, T.: Storm-time field-aligned currents on the
nightside inferred from ground-based magnetic data at midlatitudes:
Relationships with the interplanetary magnetic field and substorms, J.
Geophys. Res., 110, A07216, https://doi.org/10.1029/2004JA010737, 2005.
NASA: OMNI solar wind data available at https://spdf.gsfc.nasa.gov/pub/data/omni/high_res_omni/, last access: 18 June 2020.
Newell, P. T. and Gjerloev, J. W.: SuperMAG-based partial ring current
indices, J. Geophys. Res., 117, A05215, https://doi.org/10.1029/2012JA017586, 2012.
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A
nearly universal solar wind-magnetosphere coupling function inferred from 10
magnetospheric state variables, J. Geophys. Res., 112, A01206, https://doi.org/10.1029/2006JA012015, 2007.
Reigber, C., Lühr, H., and Schwintzer, P.: CHAMP mission
status, Adv. Space Res., 30, 129–134, https://doi.org/10.1016/S0273-1177(02)00276-4,
2002.
Rother, M. and Michaelis, I.: CH-ME-3-MAG – CHAMP 1 Hz combined magnetic
field time series (Level 3), GFZ Data Services, https://doi.org/10.5880/GFZ.2.3.2019.004, 2019.
Russell, C. T. and McPherron, R. L.: Semiannual variation of geomagnetic
activity, J. Geophys. Res., 78, 92–108, https://doi.org/10.1029/JA078i001p00092, 1973.
Siscoe, G. L., Love, J. J., and Gannon, J. L.: Problem of the Love-Gannon
relation between the asymmetric disturbance field and Dst, J. Geophys. Res.,
117, A09216, https://doi.org/10.1029/2012JA017879, 2012.
Stauning, P. and Primdahl, F.: First detection of global dawn-dusk
ionospheric current intensities using Ampère's integral law on Ørsted
orbits, Geophys. Res. Lett., 27, 3273–3276, https://doi.org/10.1029/2000GL011954, 2000.
SuperMAG: SMR index data available at http://supermag.jhuapl.edu/indices/, last access: 18 June 2020.
Suzuki, A. and Fukushima, N.: Sunward or anti-sunward electric current in
space below the MAGSAT level, Geophys. Res. Lett., 9, 345–347,
https://doi.org/10.1029/GL009i004p00345, 1982.
Suzuki, A. and Fukushima, N.: Anti-sunward current below the MAGSAT level
during magnetic storms, J. Geomagn. Geoelectr., 36, 493–506,
https://doi.org/10.5636/jgg.36.493, 1984.
Suzuki, A., Yanagisawa, M., and Fukushima, N.: Anti-sunward space currents
below the MAGSAT level during magnetic storms and its possible connection
with partial ring current in the magnetosphere, J. Geophys. Res., 90,
2465–2471, 1985.
Yamashita, S., Iyemori, T., Nakano, S., Kamei, T., and Araki, T.: Antisunward
net Birkeland current system deduced from the Oersted satellite observation,
J. Geophys. Res., 107, 1263, https://doi.org/10.1029/2001JA900160, 2002.
Zhou, Y.-L. and Lühr, H.: Net ionospheric currents
closing field-aligned currents in the auroral region: CHAMP results, J.
Geophys. Res.-Space, 122, 4436–4449, https://doi.org/10.1002/2016JA023090,
2017.
Short summary
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in the evening sector and reduced around morning. This has been attributed to the asymmetric ring current. Here a new 3D current system is proposed for explaining the asymmetric signal. Anti-sunward net currents at high latitude are connected at their noon and night ends to field-aligned currents that lead the currents to the magnetopause on the dawn and dusk flanks where the current closure occurs.
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in...